Precision calculation of the pion electromagnetic form factor from lattice QCD

In collaboration with Andreas Juettner (CERN) and Hartmut Wittig (Mainz)

14.06.2011

Contents

1. Introduction and motivation
 The electromagnetic vector form factor of the pion as a high precision lattice observable

2. Lattice regularisation
 Form factors from the lattice

3. Results
 Form factor and charge radius

4. Conclusions and outlook
1. Introduction:

The electromagnetic vector form factor of the pion as a high precision lattice observable
Lattice QCD and experiment

- Recently lattice QCD has evolved in producing reliable results for a lot of physical quantities. Some of them collected in the reviews:

(See plenary talk by Andreas Jüttner tomorrow)

- Nevertheless: Some quantities fail to reproduce physical results! (e.g. baryonic form factors, etc.)

- In general this might be due to the fact that simulations still lack full control of systematic effects.

- The charge radius of the pion, connected with the form factor, is the easiest case of an observable where these systematic effects enters and is thus well suited for a high precision benchmark of new techniques.
Vector form factor of the pion in the space-like regime

- Known from experiment with high precision.
- Relatively easy to extract from lattice simulations.
- Connected to the pion charge radius:

\[
\langle r_{\pi}^2 \rangle = 6 \left. \frac{d f_\pi(q^2)}{dq^2} \right|_{q^2=0}
\]
Vector form factor of the pion in the space-like regime: Experiment

Space-like regime with low q^2: [NA7 collaboration, Nucl. Phys. B277 (1986)]

Charge radius: $\langle r_{\pi}^2 \rangle = 0.431(10)$ fm2
Vector form factor of the pion in the space-like regime:

Lattice

Related to the matrix element of the vector current by:

$$\langle \pi^+(p_f) | V_\mu(q^2) | \pi^+(p_i) \rangle = (p_f + p_i)_\mu f_\pi(q^2)$$

- no quark-disconnected diagrams contribute
- noise reduction techniques can be applied efficiently
- in principle only space-like momenta are available due to euclidean signature of spacetime
 (recently extended also to time-like momenta)

\Rightarrow Allows for a high precision simulation!
Vector form factor of the pion in the space-like regime:

Lattice – results

\[f_{\pi \pi} - (q^*r_0)^2 \]

- PACS-CS \((N_f=2+1)\) \(m_\pi=411\) MeV
- PACS-CS \((N_f=2+1)\) \(m_\pi=296\) MeV
- ETMC \((N_f=2)\) physical point
- UKQCD \((N_f=2+1)\) \(m_\pi=330\) MeV

\(r_0\): Sommer scale \((\approx 0.5\) fm\) [Sommer (1994)]
2. Lattice regularisation:

Form factors from the lattice
The lattice

- Euclidean spacetime discretized on a 4d hypercubic lattice.
- Expectation values of observable (fermions integrated out):
 \[\langle O \rangle = \frac{1}{Z} \int d[U] \, O[U] \prod_f [\text{det} (D_f[U])] \exp (-S[U]) \]

Is measured on stochastically generated representative ensembles of gauge field configurations

- Physical results via an extrapolation to the continuum.
- Cost of the simulation grows when lowering the quark mass.
 \[\Rightarrow \quad \text{An extrapolation to the physical point is needed in most cases.} \]
- Problem: Momentum is usually introduced by Fourier transformation.
 \[\Rightarrow \quad \text{Lower momentum cut-off due to finite volume!} \]
Fourier momenta

Example: $a = 0.07$ fm; $L = 32$ $a = 2.3$ fm

solid line: Minimal q^2 from Fourier momenta
Twisted boundary conditions

This problem can be cured by the use of partially twisted boundary conditions

[Bedaque (2004); Divitiis, Petronzio, Tantalo (2004)]

- Change of the boundary conditions of the quark fields leads to a shift in the quark momenta:

\[p_i = \frac{2 \pi}{L} n_i + \frac{\theta_i}{L} \quad \text{\(\theta_i \) : twist angles} \]

- Suitable tuning allows for arbitrarily small (space-like) momentum transfers.

[Boyle et al (2007)]

- Additional finite volume effects are exponentially suppressed for matrix elements with at most one hadronic state in the initial and/or final state (like \(f_\pi, f_\pi \pi, \ldots \))

[Sachrajda, Villadoro (2005)]
3. Results:

Form factor and charge radius
CLS ensembles – Lattice parameters

We use the ensembles generated within the CLS framework (CLS: Coordinated Lattice Simulations)

[https://twiki.cern.ch/twiki/bin/view/CLS/WebHome]

Discretisation: $N_f = 2$; non-perturbatively $O(a)$-improved Wilson

Algorithm: deflation accelerated DD-HMC

[Lüscher (2004-2007)]

<table>
<thead>
<tr>
<th>β</th>
<th>$a[\text{fm}]$</th>
<th>lattice</th>
<th># masses</th>
<th>$m_\pi L$</th>
<th>Labels</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.20</td>
<td>0.08</td>
<td>64×32^3</td>
<td>3</td>
<td>6.0 – 4.0</td>
<td>A3 – A5</td>
<td>$O(100)$</td>
</tr>
<tr>
<td>5.30</td>
<td>0.07</td>
<td>64×32^3</td>
<td>2</td>
<td>6.2, 4.7</td>
<td>E4, E5</td>
<td>$O(100)$</td>
</tr>
<tr>
<td>5.30</td>
<td>0.07</td>
<td>96×48^3</td>
<td>1</td>
<td>5.0</td>
<td>F6</td>
<td>233</td>
</tr>
<tr>
<td>5.50</td>
<td>0.05</td>
<td>96×48^3</td>
<td>3</td>
<td>7.7 – 5.3</td>
<td>N3 – N5</td>
<td>$O(100)$</td>
</tr>
</tbody>
</table>
The pion form factor

Highest precision and lowest momenta ever attained!
The pion form factor
Results

The pion form factor

\[f_{\pi \pi} \approx (q_0 r_0)^2 \]

- PACS-CS \((N_f=2+1)\) \(m_\pi = 411\) MeV
- PACS-CS \((N_f=2+1)\) \(m_\pi = 296\) MeV
- ETMC \((N_f=2)\) physical point
- UKQCD \((N_f=2+1)\) \(m_\pi = 330\) MeV

\[N_5, F_6, A_5 \]
The pion form factor

\[f_{\pi\pi} = \frac{1}{(q^2)^{2N_f}} \]

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(m_\pi) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACS-CS ((N_f=2+1))</td>
<td>411</td>
</tr>
<tr>
<td>PACS-CS ((N_f=2+1))</td>
<td>296</td>
</tr>
<tr>
<td>ETMC ((N_f=2))</td>
<td>Physical point</td>
</tr>
<tr>
<td>UKQCD ((N_f=2+1))</td>
<td>330</td>
</tr>
</tbody>
</table>

\(- (q^2 r_0^2)\) vs \(f_{\pi\pi} \)
Extraction of the charge radius

- High density of points close to $q^2 = 0$ allows the direct extraction of the slope using a linear fit.
 \Rightarrow No scheme or model dependence!

- Can be checked against polynomial fits.

- Other crosschecks:
 - Vector pole dominance
 - χPt to NLO and NNLO
Charge radius: q^2 dependence of linear fits

Solid line: $-(q r_0)^2 = 0.15$, maximum q^2 used for the linear fits
Charge radius: chiral behavior
Charge radius:
chiral behavior
NLO χ_{Pt}:

Formulae

χ_{Pt} for $f_{\pi}(q^2)$:

\[
f_{\pi\pi}(q^2) = 1 + \frac{m_{\pi}^2}{f_{\pi}^2} \left[\frac{1}{6} \left(\frac{q^2}{m_{\pi}^2} - 4 \right) \bar{J} \left(\frac{q^2}{m_{\pi}^2} \right) + \frac{q^2}{m_{\pi}^2} \left(-\ell_6^r - \frac{1}{6} L \left(\frac{m_{\pi}^2}{\mu^2} \right) - \frac{1}{288\pi^2} \right) \right]
\]

with $\ell_6^r = -\frac{1}{96\pi^2} \left[\bar{\ell}_6 + 16\pi^2 L \left(\frac{m_{\pi}^2}{\mu^2} \right) \right]$

χ_{Pt} for $\langle r_{\pi}^2 \rangle$:

\[
\langle r_{\pi}^2 \rangle = \frac{m_{\pi}^2}{f_{\pi}^2} \left(-6\ell_6^r - L \left(\frac{m_{\pi}^2}{\mu^2} \right) - \frac{1}{16\pi^2} \right)
\]

- only free parameter: $\bar{\ell}_6$
- at the moment f_{π} fixed to experimental value
- renormalisation scale: $\mu = m_{\rho}$
NLO χPt:

q^2 dependence of $\bar{\ell}_6$

Solid line: $-(q r_0)^2 = 0.15$, maximum q^2 used for the fits
NLO χPt:

pion mass dependence of ℓ_6
4. Conclusions and outlook:
Conclusions

- State of the art lattice simulations of mesonic and baryonic form factors are still affected by systematic uncertainties.

- Improved simulation techniques are needed to compare lattice results and experiment to high precision to verify the conjectured agreement between the two.

- One interesting case is the charge radius of the pion that, despite other systematic effects, suffers from a model dependent extraction in almost all previous calculations.

- I presented our $N_f = 2$ study of the efficiency of novel techniques for the pion form factor and the extraction of the charge radius.

- Partially twisted boundary conditions are the main ingredient to reduce the model dependence in $\langle r_{\pi}^2 \rangle$, due to a large number of measurements at low q^2.

(here we can even do better as experiment)
Outlook

- The accuracy of our data is good enough for lattice artefacts to become visible (eventually) and a more systematic analysis is under way.

- χ^2_{Pt} to NLO does not work accurately as can be seen by the behavior of ℓ_6 with m^2_π.

 \Rightarrow To perform the extrapolation to the physical point we are going to utilise χ^2_{Pt} to NNLO.

- The chiral extrapolation will be assisted by additional measurements at smaller pion masses.

- In the end we aim at a model-independent result for the charge radius of the pion from first principles to compare to the experimental value.
Thank you for your attention!