Lorentz completion of effective string action.

Quark Confinement and the Hadron Spectrum X

Marco Meineri

University of Torino

Scuola di Studi Superiori of Torino

8 October 2012
Wilson loop and effective string.

A Wilson loop along a closed path $\mathcal{O} \rightarrow$ order parameter for confinement in gauge theories:

$$\langle W(\mathcal{C}) \rangle = \langle \text{Tr } P \exp \left[- \int_{\mathcal{O}} A_\mu(x) dx^\mu \right] \rangle.$$
Wilson loop and effective string.

A Wilson loop along a closed path $\mathcal{O} \rightarrow$ order parameter for confinement in gauge theories:

$$\langle W(\mathcal{C}) \rangle = \langle \text{Tr} \ P \exp \left[- \oint_{\mathcal{O}} A_\mu(x) dx^\mu \right] \rangle.$$

Leading order behavior at strong coupling (rectangular loop $R \times T$):

$$\langle W(R, T) \rangle \sim \left(\frac{1}{g^2} \right)^{RT} \sim e^{-\sigma RT} \quad \text{Area law}.$$

Higher orders: random surfaces with boundary on the loop.
Wilson loop and effective string.

A Wilson loop along a closed path $\mathcal{O} \to$ order parameter for confinement in gauge theories:

$$\langle W(\mathcal{O}) \rangle = \langle \text{Tr } P \exp \left[- \oint_{\mathcal{O}} A_{\mu}(x) dx^{\mu} \right] \rangle.$$

Leading order behavior at strong coupling (rectangular loop $R \times T$):

$$\langle W(R, T) \rangle \sim (1/g^2)^{RT} \sim e^{-\sigma RT} \quad \text{Area law.}$$

Higher orders: random surfaces with boundary on the loop.

\downarrow

Roughening transition and Gaussian fixed point:

$$\langle W(R, T) \rangle \sim e^{-\sigma RT} \int [DX] \exp \left\{ - \frac{\sigma}{2} \int d^2 \xi \partial_a X^i \partial^a X^i \right\}.$$
Long strings beyond the free action.

- All irrelevant couplings allowed by symmetries should appear in the effective action.
- Fields and coordinates rescaling \(\Rightarrow \) Derivative expansion:
 \[
 \partial_a X^i \longrightarrow \frac{1}{\sqrt{\sigma} R} \partial_a X^i.
 \]
- A good guess for first derivative action is the Nambu-Goto action:
 \[
 S_{NG} = -\sigma \int d^2\sigma \sqrt{-\det(\partial_a X^\mu \partial_b X_\mu)}.
 \]
Long strings beyond the free action.

- All irrelevant couplings allowed by symmetries should appear in the effective action.
- Fields and coordinates rescaling \Rightarrow Derivative expansion:
 \[
 \partial_a X^i \rightarrow \frac{1}{\sqrt{\sigma} R} \partial_a X^i.
 \]

- A good guess for first derivative action is the Nambu-Goto action:
 \[
 S_{NG} = -\sigma \int d^2 \sigma \sqrt{-\text{det}(\partial_a X^\mu \partial_b X^\mu)}.
 \]

As seen in the seminar by F. Gliozzi,

Spacetime spontaneously broken symmetries provide constraints.
Long strings beyond the free action.

- All irrelevant couplings allowed by symmetries should appear in the effective action.
- Fields and coordinates rescaling \(\Rightarrow \) Derivative expansion:
 \[
 \partial_a X^i \rightarrow \frac{1}{\sqrt{\sigma R}} \partial_a X^i.
 \]

- A good guess for first derivative action is the Nambu-Goto action:
 \[
 S_{NG} = -\sigma \int d^2\sigma \sqrt{-\det(\partial_a X^\mu \partial_b X_\mu)}.
 \]

As seen in the seminar by F. Gliozzi,

Spacetime spontaneously broken symmetries provide constraints.

And shed light on possible higher derivative couplings, But are not sufficient to single out the Nambu-Goto action.
Nonlinear realization for the transverse fluctuations.

- Transverse excitations are Goldstone bosons for translation symmetry breaking,

\[\delta b_j \epsilon X_i = \epsilon (-\delta_{ij} \xi b_j - X_j \partial b X_i) \]

1 Preserves number of derivatives minus number of fields (scaling);
2 Mixes order in the derivative expansion: recurrence relations.

ISO(1,1) and SO(D-2) invariance \Rightarrow Contraction of indices.

We have a recipe:
1 List all polynomials at lowest order at fixed scaling;
2 Build higher order terms with first derivatives;
3 Fix coefficients through the variation.

Nonlinear realization for the transverse fluctuations.

- Transverse excitations are Goldstone bosons for translation symmetry breaking,
- but also for rotation symmetry breaking\(^1\).

\[\delta b_j \epsilon X_i = \epsilon (- \delta_{ij} \xi^b - X_j \partial b X_i) \]

Preserves number of derivatives minus number of fields (scaling);
Mixes order in the derivative expansion: recurrence relations.

\[\text{ISO}(1,1) \text{ and } \text{SO}(D-2) \text{ invariance} \Rightarrow \text{Contraction of indices.} \]

We have a recipe:
1. List all polynomials at lowest order at fixed scaling;
2. Build higher order terms with first derivatives;
3. Fix coefficients through the variation.

Nonlinear realization for the transverse fluctuations.

- Transverse excitations are Goldstone bosons for translation symmetry breaking,
- but also for rotation symmetry breaking\(^1\).

The nonlinear realization for rotations in a plane that crosses the string:

\[
\delta^b_j X_i = \epsilon (-\delta_{ij} \xi^b - X_j \partial_b X_i)
\]

1. Preserves number of derivatives minus number of fields (scaling);
2. Mixes order in the derivative expansion: recurrence relations.

\textit{ISO}(1,1) and \textit{SO}(D − 2) invariance \implies \textit{Contraction} of indices.

Nonlinear realization for the transverse fluctuations.

- Transverse excitations are Goldstone bosons for translation symmetry breaking,
- but also for rotation symmetry breaking\(^1\).

The **nonlinear realization** for rotations in a plane that crosses the string:

\[
\delta^b_j X_i = \epsilon \left(-\delta_{ij} \xi^b - X_j \partial_b X_i \right)
\]

1. Preserves number of derivatives minus number of fields (scaling);
2. Mixes order in the derivative expansion: recurrence relations.

\(ISO(1, 1)\) and \(SO(D - 2)\) invariance \(\implies\) Contraction of indices.

We have a recipe:

1. List all polynomials at lowest order at fixed scaling;
2. Build higher order terms with first derivatives;
3. Fix coefficients through the variation.

Diagrammatic representation in $2 + 1$ dimensions.

We develop some simple rules:

- Every node is a field derivative, marked by its scaling;
- Every pair of contracted indices is a link.
Diagrammatic representation in $2+1$ dimensions.

We develop some simple rules:

- Every node is a field derivative, marked by its scaling;
- Every pair of contracted indices is a link.

\[
\partial_a \partial_b \partial_c X \partial^a X \partial^b \partial^c X
\]
Diagrammatic representation in 2 + 1 dimensions.

We develop some simple rules:

- Every node is a field derivative, marked by its scaling;
- Every pair of contracted indices is a link.

\[\partial_a \partial_b \partial_c X \partial^a X \partial^b \partial^c X \implies \quad \text{the seed.} \]
Diagrammatic representation in $2 + 1$ dimensions.

We develop some simple rules:

- Every node is a field derivative, marked by its scaling;
- Every pair of contracted indices is a link.

\[
\partial_a \partial_b \partial_c X \partial^a X \partial^b \partial^c X \implies \text{the seed.}
\]

\[
\partial_a \partial_b \partial_c X \partial^a X \partial^b \partial^c X (\partial_d X \partial^d X)^n \implies \text{the tower.}
\]
Diagrammatic representation in $2 + 1$ dimensions.

We develop some simple rules:

- Every node is a field derivative, marked by its scaling;
- Every pair of contracted indices is a link.

\[\partial_a \partial_b \partial_c X \partial^a X \partial^b \partial^c X \Rightarrow \]

\[\partial_a \partial_b \partial_c X \partial^a X \partial^b \partial^c X (\partial_d X \partial^d X)^n \Rightarrow \]

Translate the variation in the new language:

\[\delta_{\epsilon}^{12} (\partial_2 X) = -\epsilon (\eta_{a_1} + \partial_a X \partial_{1} X + X \partial_a \partial_{1} X) \rightarrow \delta 0_a = -\eta_{a_1} - 0_a 0_{1} - X 1_{a_1}. \]
Diagrammatic representation in $2 + 1$ dimensions.

We develop some simple rules:

- Every node is a field derivative, marked by its scaling;
- Every pair of contracted indices is a link.

\[
\partial_a \partial_b \partial_c X \partial^a X \partial^b \partial^c X \implies \quad \begin{array}{c}
0 \\
\bigcirc \\
2
\end{array} \\
1
\quad \text{the seed.}
\]

\[
\partial_a \partial_b \partial_c X \partial^a X \partial^b \partial^c X (\partial_d X \partial^d X)^n \implies \quad \begin{array}{c}
0 \\
\bigcirc \\
2
\end{array} \\
1 \\
\bigcirc \\
0 \\
\quad \text{the tower.}
\]

Translate the variation in the new language:

\[
\delta_{\epsilon}^{12} (\partial_a X) = -\epsilon (\eta_{a1} + \partial_a X \partial_1 X + X \partial_a \partial_1 X) \quad \rightarrow \quad \delta 0_a = -\eta_{a1} - 0_a 0_1 - X 1_{a1}.
\]

An invariant corresponds to every graph without first derivatives (scaling zero is the exception).
The case of one transverse direction.

- Independent recursion for each seed \Rightarrow sum up once for all;
- Simple rules to list all seeds belonging to an invariant;
- Numerical factors are simple combinatorial factors in the graph picture.
The case of one transverse direction.

- Independent recursion for each seed \Longrightarrow sum up once for all;
- Simple rules to list all seeds belonging to an invariant;
- Numerical factors are simple **combinatorial factors** in the graph picture.

For instance:

$$\alpha_1 \left(\partial a X \partial a \partial b X \partial b \partial c X \partial c \right) + \alpha_2 \left(\partial a X \partial a \partial b \partial c X \partial b \partial c \right) \partial d X \partial e X \partial d \partial e X \right)$$

$$= 2 \alpha_2 + 2 \cdot 2 \cdot 1 \frac{1!}{1!} \alpha_1 = 0.$$
The case of one transverse direction.

- Independent recursion for each seed \implies sum up once for all;
- Simple rules to list all seeds belonging to an invariant;
- Numerical factors are simple \textit{combinatorial factors} in the graph picture.

For instance:

\[
\alpha_1 (\partial_a X \partial^a \partial^b X \partial_b \partial_c X \partial^c X) + \alpha_2 (\partial_a X \partial^a \partial^b \partial^c X \partial_b \partial_c X) (\partial_d X \partial_e X \partial^d \partial^e X)?
\]
The case of one transverse direction.

- Independent recursion for each seed \(\implies\) sum up once for all;
- Simple rules to list all seeds belonging to an invariant;
- Numerical factors are simple combinatorial factors in the graph picture.

For instance:

\[
\alpha_1 (\partial_a X \partial^a \partial^b X \partial_b \partial_c X \partial^c X) + \alpha_2 (\partial_a X \partial^a \partial^b \partial^c X \partial_b \partial_c X) (\partial_d X \partial_e X \partial^d \partial^e X) \]

And:

\[
2\alpha_2 + \frac{2 \cdot 2 \cdot 1}{2!1!} \alpha_1 = 0.
\]
The case of one transverse direction.

- Independent recursion for each seed \implies sum up once for all;
- Simple rules to list all seeds belonging to an invariant;
- Numerical factors are simple combinatorial factors in the graph picture.

For instance:

\[\alpha_1 (\partial_a X \partial^a \partial^b X \partial_b \partial_c X \partial^c X) + \alpha_2 (\partial_a X \partial^a \partial^b \partial^c X \partial_b \partial_c X) (\partial_d X \partial_e X \partial^d \partial^e X)? \]

And:

\[2\alpha_2 + \frac{2 \cdot 2 \cdot 1}{2!1!} \alpha_1 = 0. \]
Unrestrained dimensions: scaling zero.

Two more rules:

1. A wavy link stands for a scalar product in the bulk;
2. A dot stands for the matrix of parameters of the transformation.

\[
\sum_{k=1}^{\infty} \left(-1 \right)^{k+1} \frac{1}{k} \left[\left(\partial X \cdot \partial X \right)^k \right]_{ab} \delta_{ba} = \log \left\{ -\det \left(\eta + \partial X \cdot \partial X \right) \right\}.
\]

The third addend forces to add a new ring. We get a new series:

\[
L_0 = b_0 \sum_{n=0}^{\infty} \frac{1}{n!} \left\{ \frac{1}{2} \log \left\{ -\det \left(\eta + h \right) \right\} \right\}_{n} - b_0 = b_0 \sqrt{-\det \left(\eta + h \right)} - b_0.
\]
Unrestrained dimensions: scaling zero.

Two more rules:
1. A wavy link stands for a scalar product in the bulk;
2. A dot stands for the matrix of parameters of the transformation.

Every ring grows to cancel variations, and the recurrence relation:

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k} [(\partial X \cdot \partial X)^k]^a_b \delta^b_a = \log \{ - \det (\eta + \partial X \cdot \partial X) \}.$$
Unrestrained dimensions: scaling zero.

Two more rules:
1. A wavy link stands for a scalar product in the bulk;
2. A dot stands for the matrix of parameters of the transformation.

- Every ring grows to cancel variations, and the recurrence relation:

\[
\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k} [((\partial X \cdot \partial X)^k]^a_b \delta^b_a = \log \{ - \det (\eta + \partial X \cdot \partial X) \}.
\]

- The third addend forces to add a new ring. We get a new series:

\[
\mathcal{L}_0 = b_0 \sum_{n=0}^{\infty} \frac{1}{n!} \left\{ \frac{1}{2} \log \left[- \det(\eta + h) \right] \right\}^n - b_0 = b_0 \sqrt{- \det(\eta + h) - b_0}.
\]
Three moves for higher derivative actions.

First move: substitute the inverse of the induced metric to every solid link\(^2\).

\[
\sum_{k=0}^{\infty} \left[(\eta + h) - 1 \right]_{ab} = g_{ab}.
\]

Second move: substitute a new metric to every wavy link.

\[
\delta_{ij} \rightarrow t_{ij} = \delta_{ij} - \partial_a X_i g_{ab} \partial_b X_j.
\]

Third move: split each node according to the pattern of the variation. A seed without 0s becomes invariant under the whole Poincaré group.

Three moves for higher derivative actions.

First move: substitute the inverse of the induced metric to every solid link\(^2\).

\[
\sum_{k=0}^{\infty} \left[(- h)^k \right]_{ab} = (\eta + h)^{-1}_{ab} \equiv g^{ab}.
\]

Three moves for higher derivative actions.

First move: substitute the inverse of the induced metric to every solid link\(^2\).

\[
\sum_{k=0}^{\infty} \left[(-h)^k \right]_{ab} = (\eta + h)^{-1}_{ab} \equiv g^{ab}.
\]

Second move: substitute a new metric to every wavy link.

\[
\delta^{ij} \rightarrow t^{ij} = \delta^{ij} - \partial_a X^i g^{ab} \partial_b X^j
\]
Three moves for higher derivative actions.

First move: substitute the inverse of the induced metric to every solid link\(^2\).

\[
\sum_{k=0}^{\infty} \left[(-h)^k \right]_{ab} = (\eta + h)^{-1}_{ab} \equiv g^{ab}.
\]

Second move: substitute a new metric to every wavy link.

\[
\delta^{ij} \rightarrow t^{ij} = \delta^{ij} - \partial_a X^i g^{ab} \partial_b X^j
\]

Third move: split each node according to the pattern of the variation.

Three moves for higher derivative actions.

First move: substitute the inverse of the induced metric to every solid link\(^2\).

\[\sum_{k=0}^{\infty} \left(-h \right)^k_{ab} = (\eta + h)^{-1}_{ab} \equiv g^{ab}. \]

Second move: substitute a new metric to every wavy link.

\[\delta^{ij} \rightarrow t^{ij} = \delta^{ij} - \partial_a X^i g^{ab} \partial_b X^j \]

Third move: split each node according to the pattern of the variation.

A seed without 0s becomes invariant under the whole Poincaré group.

Higher derivative corrections to the DBI lagrangian.

Scaling two:

\[\mathcal{L}_2^1 \propto \sqrt{-g} \left(\partial_{ab}^2 X_k \partial_{cd}^2 X_k g^{ac} g^{bd} - \partial_{ab}^2 X_k \partial_{cd}^2 X_i \partial_e X^k \partial_f X^i g^{ac} g^{bd} g^{ef} \right) \]

\[\mathcal{L}_2^2 \propto \sqrt{-g} \left(\partial_{ab}^2 X_k \partial_{cd}^2 X_k g^{ab} g^{cd} - \partial_{ab}^2 X_k \partial_{cd}^2 X_i \partial_e X^k \partial_f X^i g^{ab} g^{cd} g^{ef} \right) \]

\[\mathcal{L}_2^2 \propto (\text{extrinsic curvature})^2, \quad \mathcal{L}_1^1 - \mathcal{L}_2^2 \propto \sqrt{-g} R. \]
Higher derivative corrections to the DBI lagrangian.

Scaling two:
\[
\mathcal{L}_1^2 \propto \sqrt{-g} \left(\partial^2_{ab} X^k \partial^2_{cd} X_k g^{ac} g^{bd} - \partial^2_{ab} X_k \partial^2_{cd} X_i \partial_e X^k \partial_f X^i g^{ac} g^{bd} g^{ef} \right)
\]
\[
\mathcal{L}_2^2 \propto \sqrt{-g} \left(\partial^2_{ab} X^k \partial^2_{cd} X_k g^{ab} g^{cd} - \partial^2_{ab} X_k \partial^2_{cd} X_i \partial_e X^k \partial_f X^i g^{ab} g^{cd} g^{ef} \right)
\]
\[
\mathcal{L}_2^2 \propto (\text{extrinsic curvature})^2, \quad \mathcal{L}_1^2 - \mathcal{L}_2^2 \propto \sqrt{-g} R.
\]

Scaling four:
- Combinations: \(\mathcal{L}_2^\alpha \mathcal{L}_2^\beta / \sqrt{-g} \), \(\alpha, \beta = 1, 2 \). Among them: \(\mathcal{L} \propto \sqrt{-g} R^2 \).
- Combinations of other seeds generate also \(\mathcal{L} \propto \sqrt{-g} R_{ab} R^{ab} \).
Higher derivative corrections to the DBI lagrangian.

Scaling two:

\[
\mathcal{L}_2^1 \propto \sqrt{-g} \left(\partial_{ab}^2 X^k \partial_{cd}^2 X_k g^{ac} g^{bd} - \partial_{ab}^2 X_k \partial_{cd}^2 X_i \partial_e X^k \partial_f X^i g^{ac} g^{bd} g^{ef} \right)
\]

\[
\mathcal{L}_2^2 \propto \sqrt{-g} \left(\partial_{ab}^2 X^k \partial_{cd}^2 X_k g^{ab} g^{cd} - \partial_{ab}^2 X_k \partial_{cd}^2 X_i \partial_e X^k \partial_f X^i g^{ab} g^{cd} g^{ef} \right)
\]

\[
\mathcal{L}_2^2 \propto (\text{extrinsic curvature})^2, \quad \mathcal{L}_1^1 - \mathcal{L}_2^2 \propto \sqrt{-g} R.
\]

Scaling four:

- Combinations: \(\mathcal{L}_2^\alpha \mathcal{L}_2^\beta / \sqrt{-g} \), \(\alpha, \beta = 1, 2 \). Among them: \(\mathcal{L} \propto \sqrt{-g} R^2 \).
- Combinations of other seeds generate also \(\mathcal{L} \propto \sqrt{-g} R_{ab} R^{ab} \).

But More invariants than the geometrical ones.

One with a split vertex:
Non-local coupling and quantization constraints.

Aharony and Dodelson have noticed the importance of the coupling

\[\mathcal{L}_{AD} = \sqrt{-g} R \frac{1}{\Box} R, \]

where the differential operator is defined such that

\[g = \frac{1}{\Box} f \quad \Rightarrow \quad \Box g = f + \text{Nambu-Goto e.o.m.} \]
Non-local coupling and quantization constraints.

Aharony and Dodelson have noticed the importance of the coupling

\[\mathcal{L}_{AD} = \sqrt{-g} R \frac{1}{\tilde{\Box}} R, \]

where the differential operator is defined such that

\[g = \frac{1}{\tilde{\Box}} f \implies \tilde{\Box} g = f + \text{Nambu-Goto e.o.m.} \]

- This scaling two term is invariant only on-shell, so we don’t find it;
- It is in fact a non-invariant counterterm necessary for the closure of quantum Lorentz algebra\(^3\).

Quantization seems to require more couplings than Lorentz invariant ones.

\(^3\text{Dubovsky et al. (2012), arXiv:1203.1054.}\)
Conclusions and open problems.

- We have a simple method to find Lorentz invariant contributions to the effective action of p-branes or strings. Is the list complete?
Conclusions and open problems.

- We have a simple method to find Lorentz invariant contributions to the effective action of p-branes or strings. Is the list complete?
- First correction to the DBI action for a p-brane with $p > 1$ is the HE action.
- First correction to Nambu-Goto action for a string comes from the boundary (tested on the lattice). First contribution from the bulk is $\mathcal{L} \propto \sqrt{-g} R^2$.
Conclusions and open problems.

- We have a simple method to find Lorentz invariant contributions to the effective action of p-branes or strings. Is the list complete?
- First correction to the DBI action for a p-brane with $p > 1$ is the HE action.
- First correction to Nambu-Goto action for a string comes from the boundary (tested on the lattice). First contribution from the bulk is $\mathcal{L} \propto \sqrt{-g} R^2$.
- Lorentz invariance is less restrictive than diffeomorphism invariance. Maybe some invariants are coordinate-independent, but not a local function of the induced metric.
Conclusions and open problems.

- We have a simple method to find Lorentz invariant contributions to the effective action of p-branes or strings. Is the list complete?
- First correction to the DBI action for a p-brane with $p > 1$ is the HE action.
- First correction to Nambu-Goto action for a string comes from the boundary (tested on the lattice). First contribution from the bulk is $\mathcal{L} \propto \sqrt{-g} R^2$.
- Lorentz invariance is less restrictive than diffeomorphism invariance. Maybe some invariants are coordinate-independent, but not a local function of the induced metric.
- The field strength for an $U(1)$ gauge boson transforms as the induced metric: straightforward generalization to a photon propagating on a p-brane.

Conclusions and open problems.

- We have a simple method to find Lorentz invariant contributions to the effective action of p-branes or strings. Is the list complete?
- First correction to the DBI action for a p-brane with $p > 1$ is the HE action.
- First correction to Nambu-Goto action for a string comes from the boundary (tested on the lattice). First contribution from the bulk is $\mathcal{L} \propto \sqrt{-g} R^2$.
- Lorentz invariance is less restrictive than diffeomorphism invariance. Maybe some invariants are coordinate-independent, but not a local function of the induced metric.
- The field strength for an $U(1)$ gauge boson transforms as the induced metric\(^4\): *straightforward generalization* to a photon propagating on a p-brane.

Further constraints from quantization?

Thanks for your attention.