Monte-Carlo simulations of the electronic properties of graphene

[ArXiv:1206.0619]

P. V. Buividovich
(Regensburg University)
Graphene: strongly coupled fermionic field theory

- Large effective coupling constant $\alpha \sim 1/137$, $1/v_F \sim 2$
- Experimental data are not always clean
- Numerical methods are required
- Massless Dirac fermions at low energies
- Spontaneous breaking of chiral symmetry???
- Numerical studies of effective low energy theory using lattice QCD techniques (staggered fermions)
 [J. Drut, T. Lahde, S. Hands, ITEP Group]
- Numerical studies directly on the hexagonal lattice
 [ITEP Group, C. Rebbi, R. Brower, D. Schaich]
Geometry of hexagonal lattice

Periodic boundary conditions on the Euclidean torus:

\[(\xi_1 + L_x, \xi_2) \rightarrow (\xi_1, \xi_2), \]
\[(\xi_1, \xi_2 + L_y) \rightarrow (\xi_1 + L_y/2, \xi_2). \]
The “Tight-binding” Hamiltonian

\[\hat{H}_{tb} = -\kappa \sum_{\sigma=\uparrow, \downarrow} \sum_{<XY>} \left(\hat{a}_{\sigma,X}^\dagger \hat{a}_{\sigma,Y} + \hat{a}_{\sigma,Y}^\dagger \hat{a}_{\sigma,X} \right) \]

\[\{ \hat{a}_{\sigma,X}^\dagger, \hat{a}_{\sigma',Y} \} = \delta_{\sigma \sigma'} \delta_{X,Y} \]

\[\hat{H}_I = \sum_{X,Y} \frac{e^2}{r(X,Y)} \hat{q}_X \hat{q}_Y, \]
• Each lattice site can be occupied by two electrons (with opposite spin)

• The ground states is electrically neutral

• One electron (for instance) at each lattice site

• «Dirac Sea»: hole = absence of electron in the state
Hamiltonian: particles and holes

\[
\hat{H}_{tb} = -\kappa \sum_{\sigma=\uparrow,\downarrow} \sum_{<XY>} \left(\hat{\psi}^\dagger_{\sigma,X} \exp \left(\pm i \hat{\theta}_{XY} \right) \hat{\psi}_{\sigma,Y} + \hat{\psi}^\dagger_{\sigma,Y} \exp \left(\pm i \hat{\theta}_{YX} \right) \hat{\psi}_{\sigma,X} \right) + \\
+ \sum_{\sigma=\uparrow,\downarrow} \sum_{X_1} m \hat{\psi}^\dagger_{\sigma,X_1} \hat{\psi}_{\sigma,X_1} - \sum_{\sigma=\uparrow,\downarrow} \sum_{X_2} m \hat{\psi}^\dagger_{\sigma,X_2} \hat{\psi}_{\sigma,X_2} \tag{9}
\]

Redefinition of creation/annihilation operators

\[
\hat{\psi}_{\uparrow,X} = \hat{a}^\dagger_{\uparrow,X}, \quad \hat{\psi}_{\downarrow,X} = \pm \hat{a}^\dagger_{\downarrow,X},
\]

Charge operator

\[
\hat{q}_X = \hat{\psi}^\dagger_{\uparrow,X} \hat{\psi}_{\uparrow,X} - \hat{\psi}^\dagger_{\downarrow,X} \hat{\psi}_{\downarrow,X}.
\]
Spectrum of quasiparticles in graphene

Consider the non-Interacting tight-binding model!!!

Eigenmodes are just the plain waves:

\[
\psi_{\zeta} (\alpha, \xi; q) = N_{\alpha,\zeta} (q) \exp (i q \xi), \\
\psi_{\zeta} (\beta, \xi; q) = N_{\beta,\zeta} (q) \exp (i q \xi),
\]

Eigenvalues:

\[
E_{\zeta} (q) \equiv \zeta E (q) = \zeta \sqrt{m^2 + \kappa^2 |\Phi (q)|^2},
\]

Wave function normalization:

\[
N_{\alpha,\zeta} (q) = \sqrt{\frac{E (q) + \zeta m}{2 E (q) L_x L_y}}, \\
N_{\beta,\zeta} (q) = -\zeta e^{-i\varphi(q)} \sqrt{\frac{E (q) - \zeta m}{2 E (q) L_x L_y}},
\]

\[
\Phi (k) = \sum_{a=1}^{3} e^{i \mathbf{k} \cdot \mathbf{e}_a}
\]
Spectrum of quasiparticles in graphene

Close to the «Dirac points»: $E = v_F k$
Spectrum of quasiparticles in graphene

Dirac points are only covered by discrete lattice momenta if the lattice size is a multiple of three
Symmetries of the free Hamiltonian

- 2 Fermi-points \times 2 sublattices = 4 components of the Dirac spinor

- Chiral U(4) symmetry (massless fermions): right ↔ left

- Discrete \(\mathbb{Z}_2 \) symmetry between sublattices

- U(1) x U(1) symmetry: conservation of currents with different spins
Coulomb interactions

\[V(r) = \frac{2e^2}{(\varepsilon + 1)r} \]

\[\alpha \rightarrow \frac{2\alpha}{\varepsilon + 1} \]

Dielectric permittivity:

- Suspended graphene
 \[\varepsilon = 1.0 \]
- Silicon Dioxide SiO\(_2\)
 \[\varepsilon \sim 3.9 \]
- Silicon Carbide SiC
 \[\varepsilon \sim 10.0 \]

Coupling constant

\[\alpha \sim \frac{1}{137} \quad \frac{1}{v_F} \sim 1 \]

Strongly coupled theory!!!
Numerical simulations using the Hybrid Monte-Carlo method

- Hexagonal lattice
- Noncompact $\text{U}(1)$ gauge field
- Algorithm can be accelerated outside of graphene plane
- Geometry: graphene on the substrate
Numerical simulations using the Hybrid Monte-Carlo method

Discretization of Laplacian on the hexagonal lattice reproduces Coulomb potential with a good precision.
Numerical simulations using the Hybrid Monte-Carlo method

Lattice action for fermions:

\[S_{lb} [\eta(s, \xi, \tau)] = \sum_{s, \xi, \tau, s', \xi', \tau'} \bar{\eta}(s, \xi, \tau) M[s, \xi, \tau; s', \xi', \tau'] \eta(s', \xi', \tau') = \]
\[= \sum_{s, \xi, \tau} \bar{\eta}(s, \xi, \tau) \left(\eta(s, \xi, \tau) - e^{i\phi(s, \xi, \tau)} \eta(s, \xi, \tau + \Delta\tau) \right) - \]
\[-\kappa \Delta\tau \sum_{\xi, \tau, b} \bar{\eta}(\alpha, \xi, \tau) e^{i\phi(\alpha, \xi, \tau)} \eta(\beta, \xi + \rho_b, \tau + \Delta\tau) - \kappa \Delta\tau \sum_{\xi, \tau, b} \bar{\eta}(\beta, \xi, \tau) e^{i\phi(\beta, \xi, \tau)} \eta(\alpha, \xi - \rho_b, \tau + \Delta\tau) + \]
\[+ m \Delta\tau \sum_{\xi, \tau} \bar{\eta}(\alpha, \xi, \tau) e^{i\phi(\alpha, \xi, \tau)} \eta(\alpha, \xi, \tau + \Delta\tau) - m \Delta\tau \sum_{\xi, \tau} \bar{\eta}(\beta, \xi, \tau) e^{i\phi(\beta, \xi, \tau)} \eta(\beta, \xi, \tau + \Delta\tau), \]

Path integral weight:

\[Z = \int D\phi(s, \xi, \tau, z) \left| \det (M[\phi(s, \xi, \tau, z = 0)]) \right|^2 \]
\[\exp (-S_{em}[\phi(s, \xi, \tau, z)]) \]
Spontaneous sublattice symmetry breaking in graphene

Order parameter:
The difference between the number of particles on A and B sublattices

$$\Delta_N = N_A - N_B$$

“Mesons”: particle-hole bound state
Differences of particle numbers

Differences of particle numbers
Differences of particle numbers on lattices of different size
Extrapolation to zero mass

\[\langle \Delta N \rangle \]

\[\varepsilon \]

- Graph showing \(\langle \Delta N \rangle \) versus \(\varepsilon \) for different lattice sizes and temperatures.
- Data points for different lattice sizes and temperatures are marked with different symbols and colors.
- Trends indicate a decrease in \(\langle \Delta N \rangle \) with increasing \(\varepsilon \).
- Extrapolation to zero mass is suggested through the graph trend.
Susceptibility of particle number differences

\[
\chi_N = \left. \frac{\partial \Delta_N}{\partial m} \right|_{m \to 0}
\]
Conductivity of graphene

Current operator:

\[\frac{\partial}{\partial t} \hat{q}(s, \xi) = \sum_a \hat{J}_a(s, \xi), \]

= charge, flowing through lattice links

\[\hat{J}_a(\xi) = \hat{J}_{\uparrow,a}(\xi) - \hat{J}_{\downarrow,a}(\xi) \]

\[\hat{J}_{\sigma,a}(\xi) = i \kappa \hat{\psi}_{\sigma}^\dagger(\beta, \xi + \rho_a) e^{\mp i \hat{\theta}_a(\xi)} \hat{\psi}_\sigma(\alpha, \xi) - \]

\[- i \kappa \hat{\psi}_{\sigma}^\dagger(\alpha, \xi) e^{\pm i \hat{\theta}_a(\xi)} \hat{\psi}_\sigma(\beta, \xi + \rho_a), \]

\[\hat{J}_a(\alpha, \xi) = \hat{J}_a(\xi), \quad \hat{J}_a(\beta, \xi) = \hat{J}_a(\xi - \rho_a). \]

Retarded propagator and conductivity:

\[G_{Rab}(\xi, t; \xi', t') = i \theta(t - t') \times \]

\[\times \text{Tr} \left(\left[\hat{J}_a(\xi, t), \hat{J}_b(\xi', t') \right] e^{-\hat{H}/(kT)} \right) \]

\[\sigma(w) = \frac{G_{Rbc}(w) T_{bc}}{3 \sqrt{3} w}, \]
Conductivity of graphene: Green-Kubo relations

Current-current correlators in Euclidean space:

\[
G(\tau) = \frac{1}{3\sqrt{3} L_x L_y} \sum_{\xi, \xi'} T_{bc} \times \nabla \times \text{Tr} \left(e^{\tau \hat{H}} \hat{J}_b(\xi) e^{-\tau \hat{H}} \hat{J}_c(\xi') e^{-\hat{H}/T} \right)
\]

Green-Kubo relations:

\[
G(\tau) = \int_0^{\infty} \frac{dw}{2\pi} K(w, \tau) \sigma(w),
\]

Thermal integral kernel:

\[
K(w, \tau) = \frac{2w \cosh \left(w \left(\tau - \frac{1}{2T} \right) \right)}{\sinh \left(\frac{w}{2T} \right)}.
\]
Conductivity of graphene

\(\sigma(\omega) \) – dimensionless quantity
(in a natural system of units), in SI: \(\sim e^2/h \)

Conductivity from Euclidean correlator:
an ill-posed problem

Maximal Entropy Method

Approximate calculation of \(\sigma(0) \):

\[
G(\beta/2) = \int_0^{+\infty} dw \frac{2w}{2\pi \sinh(\beta w / 2)} \sigma(w) \approx \pi (kT)^2 \sigma(0)
\]

AC conductivity, averaged over \(w \leq kT \)
Conductivity of graphene: free theory

For small frequencies (Dirac limit):

\[
\sigma^{(0)}(w) \approx \Xi \delta(w) + \theta(w - 2m) \left(1 + \frac{4m^2}{w^2} \right) \tanh \left(\frac{\beta w}{4} \right),
\]

Threshold value \(w = 2m \)

Universal limiting value at \(\kappa >> w >> m \):

\[
\sigma_0 = \pi e^2/2 \ h=1/4 \ e^2/\hbar
\]

At \(w = 2m \):

\[
\sigma = 2\sigma_0
\]
Conductivity of graphene: Free theory
Current-current correlators: numerical results

\[\kappa \Delta t = 0.15, \ m \Delta t = 0.01, \ \kappa/(kT) = 18, \ L_s = 24 \]
Conductivity of graphene $\sigma(0)$: numerical results (approximate definition)
Conclusions

• Electronic properties of graphene at half-filling can be studied using the Hybrid Monte-Carlo algorithm.

• Sign problem is absent due to the symmetries of the model.

• Signatures of insulator-semimetal phase transition for monolayer graphene.

• Order parameter:
 difference of particle numbers on two simple sublattices

• Spontaneous breaking of sublattice symmetry is accompanied by a decrease of conductivity

see ArXiv:1206.0619
Outlook

• **A puzzle**: according to lattice data, there should be spontaneous breaking of sublattice symmetry for suspended graphene

• **BUT** we observe rather mild decrease of conductivity

• Experimentally: suspended graphene is conducting, no signature of a gap in the spectrum [Elias et al. 2011]

• Confirmed by approximate analytical calculations [Talk by C. Popovici]