The sigma meson and its components in a functional approach

Xth Quark Confinement and the Hadron Spectrum, Munich

R. Williams, R. Alkofer, University of Graz
Contents

1. Introduction
2. Framework
3. Results
4. Conclusion
Contents

1. Introduction
2. Framework
3. Results
4. Conclusion
Introduction

★ QCD complicated (but interesting)
 • Dynamical Chiral Symmetry Breaking
 • Confinement of quarks/glues

★ Understanding important
 • Hadronic spectrum
 • Nucleon/Delta form factors
 see G. Eichmann, H. Sanchis-Alepuz
 • Electroweak Observables (muon g-2)
 see C. S. Fischer, T. Goecke
Introduction

★ Non-perturbative effects - need tools!
 - EFTs, ChPT, NJL, CQM ... functional methods

★ Lattice QCD
 - *ab initio*, systematic
 - expensive, finite volume/size

★ DSEs, FRG + BSE
 - *ab initio*, continuum, infinite volume
 - truncated (improvements in progress)

see V. Mader, M. Hopfer
Introduction

★ Scalar sector of interest
 • Proposed by Teller/Dürr for nuclear int.
 • Linear sigma-model / NJL predict state

★ Long and complicated history e.g. Amsler & Törnqvist
 • Large widths (strong pi-pi, K-K decay)
 • Inverted mass hierarchy
 • non-qqbar behaviour of decays
 • Too many states for QM, glueball mixing?
Introduction

★ Composition of the sigma

• conventional \(q\bar{q} \)
• tetraquark \(q\bar{q}q\bar{q} \ q\bar{q}q\bar{q} \)
• molecule \(q\bar{q} \ q\bar{q} \)
• ...

Dynamical mixture of all of above?

★ Existence of scalar states - Classification?

• Here: investigate conventional composition and dress with dominant \(\pi \pi \) decay using BSE. Steps towards coupled channel.
Introduction

★ T-Matrix pole

\[f_0(600) \]

\begin{align*}
M \ (\text{MeV}) & \quad 400-1200 \\
\Gamma \ (\text{MeV}) & \quad 250-500
\end{align*}

PDG 1996-2010
Introduction

★ T-Matrix pole

\[M \text{ (MeV)} \quad 440-550 \]
\[\Gamma \text{ (MeV)} \quad 200-350 \]

uChPT reliable

PDG 2012-present

\[f_0(500) \]
Contents

1. Introduction
2. Framework
3. Results
4. Conclusion
Quark Gap Equation

★ DSE

\[
S^{-1} = Z_f^{-1}(p^2) \left(-i \not{p} + M(p^2) \right)
\]

★ Solution requires:

- Gluon
- QG-Vertex

→ Truncation

★ Mass function
Truncation: Rainbow

★ Gluon propagator

$$D_{\mu \nu}(q) = \left(\delta_{\mu \nu} - \frac{q_{\mu}q_{\nu}}{q^2} \right) \frac{Z(q^2)}{q^2}$$

★ Quark-Gluon vertex

$$\Gamma_\mu(k, p) = \gamma_\mu$$

• Scalar dressing “Z” chosen to give DCSB
• Interaction corresponds to OGE

$q\bar{q}$ interaction for BSE must be chosen consistent with chiral symmetry breaking.
Truncation: Ladder

★ axial-vector Ward-Takahashi identity

★ Gluon ladder

- Here, easy to write down ansatz that satisfies axWTI
- Hard to go beyond!

C. S. Fischer and RW
L. Chang and C. D. Roberts
Truncation: Decay channels?

- Need corresponding truncations for quark DSE

 \[\Sigma \sim K \]

★ Measuring width from pole mass requires dynamical modeling of the decay channel.

- Use a simpler approach here
Bethe-Salpeter Equation

- Ladder approximation - iterated OGE
- Satisfies axial-vector WTI
- Dynamically generates s-channel poles
- No-decay channels or flavour mixing

★ meson with $J^{PC} = 0^{++}$, $M \sim 647$ MeV
Sigma-Pi-Pi Form Factor

- Form-factor is a scalar

\[F(P, Q) = \frac{g_{\sigma\pi\pi}}{M_{\sigma}} \]

- All particles on-shell, determines \(g_{\sigma\pi\pi} \sim 2.2 \)

- Breit-Wigner width given by

\[\Gamma_{\sigma \rightarrow \pi\pi} = 3g_{\sigma\pi\pi}^2 \frac{\sqrt{1 - 4M_{\pi}^2/M_{\sigma}^2}}{16\pi M_{\sigma}} \sim 0.4 \text{ GeV} \]
Breit-Wigner?

- Only valid for narrow widths
- BW extracted influenced by background/process
- Pole mass more robust

$$\Gamma \approx 2 \text{Im} \sqrt{s_{\text{pole}}}$$

Can estimate shift in pole position due to decay channel via semi-perturbative correction to the sigma
Diamond Diagram

★ Self-Energy correction

\[\Delta P^2 \sim \sigma \]

- Extend FF to off-shell momenta
Diamond Diagram

- Phase space information contained in integrand.

★ integrate over pion propagator poles when

\[M_\sigma > 2M_\pi \]

- Tune masses with quark mass as parameter
- open/close sigma-pi-pi channel
1. Introduction
2. Framework
3. Results
4. Conclusion
Self-energy correction

- At physical pion mass, \(\Delta P^2 \sim 0.13 - 0.33i \)
Shift in T-matrix pole

- At physical pion mass, \(s^{1/2} \sim 0.6 - 0.274i \)
Breit-Wigner Mass/Width

At physical pion mass, \(M \sim 0.54, \Gamma \sim 0.61 \)
Contents

1. Introduction
2. Framework
3. Results
4. Conclusion
Conclusion

★ Iterated one-gluon exchange

- $q\bar{q}$ core, BS mass 0.647 GeV
- No decay width

★ Sigma to pi-pi decay

- on mass shell: $g_{\sigma\pi\pi} \sim 2.3$
- Breit Wigner: $\Gamma \sim 0.4$ GeV
Conclusion

★ Semi-perturbative pi-pi decay

• phase space/threshold
• sizable width
• negative mass shift

★ T-matrix pole
\[s^{1/2} \sim 0.6 - 0.274i \]
★ Breit-Wigner
\[M \sim 0.54, \quad \Gamma \sim 0.61 \]

• Compare with uChPT
\[s^{1/2} \sim 0.457^{+0.014}_{-0.013} - 0.279^{+0.011}_{-0.007}i \]

J. Pelaez et al, arXiv:1209.1241
Outlook

• Dynamical inclusion of decay channel in BSE

 P. Watson, RW, C. S. Fischer, Work In Progress

• Coupling to tetraquarks & glueballs needed.

 see S. Strauss

• Still question of explaining decay channels / rates