Polyakov line models from lattice gauge theory, and the sign problem

Jeff Greensite

Confinement 10
Munich, Germany
October 2012
We are interested in the QCD phase diagram at finite temperature and baryon density. To get a finite baryon density, we introduce a quark chemical potential μ into the QCD Lagrangian.

The problem is that this addition makes S_{QCD} complex, and $\exp[S_{\text{QCD}}]$ oscillatory. Standard Monte Carlo simulation via importance sampling breaks down! This is the "sign problem."

Motivation: The Sign Problem

Maybe the phase diagram looks like this. Nobody knows for sure.
Integrate out all the d.o.f. in a lattice gauge theory, subject to the constraint that Polyakov line holonomies are held fixed.

The resulting D=3 action is the **Effective Polyakov line model** (a.k.a “Effective spin model”).

Using the strong-coupling and hopping parameter expansions, this action at lowest order has the form

\[
S_{P} = \beta_{P} \sum_{x} \sum_{i=1}^{3} \left[\text{Tr} U_{x}^{\dagger} \text{Tr} U_{x+\hat{i}} + \text{Tr} U_{x} \text{Tr} U_{x+\hat{i}}^{\dagger} \right] + \kappa \sum_{x} \left[e^{\mu} \text{Tr} U_{x} + e^{-\mu} \text{Tr} U_{x}^{\dagger} \right]
\]

The model seems to have a relatively **mild** sign problem, for a large range of parameters β_{P}, κ, μ.

Effective Polyakov line models
The model, with finite μ, can be solved in any one of several ways:

- Flux representation (Mercado & Gattringer)
- Reweighting (Philipsen, Langelage, et al.)
- Stochastic quantization (Aarts & James)
- even mean field is not too bad (Splittorff & JG)

If we knew the S_p corresponding to S_{QCD} at realistic gauge couplings and light quark masses, and if the sign problem remains mild, then we could find the phase diagram of S_{QCD} by computing the phase diagram of S_p.

But – what is S_p in the parameter range of interest?
Consider a lattice of $N_t=1/T$ lattice spacings in the time direction. Lattice coupling and quark masses are arbitrary, *but $\mu=0$ for now*. It is convenient to fix to temporal gauge, $U(x,t) = 1$ except on one timeslice, say $t=0$. Then by definition

$$
\exp \left[S_P[U_x] \right] = \int DU_0(x,0) DU_k D\bar{\psi} D\psi \left\{ \prod_x \delta[U_x - U_0(x,0)] \right\} e^{S_{QCD}}
$$

Lets pick a set of “effective spin” configurations (anything we like):

$$
\left\{ \{U_x^{(i)}\}, \text{ all } x \in V_3, \; i = 1, 2, \ldots, M \right\}
$$

and imagine restricting the timelike links at $t=0$ to just this set.
Define the partition function of this system

\[
Z = \int D U_0(x,0) D U_k D \bar{\psi} D \psi \sum_{i=1}^{M} \left\{ \prod_{x} \delta[U^{(i)}_x - U_0(x,0)] \right\} e^{S_{QCD}}
\]

and consider the ratio

\[
\frac{\exp[S_P[U^{(j)}]]}{\exp[S_P[U^{(k)}]]} = \frac{\int D U_0(x,0) D U_k D \bar{\psi} D \psi \left\{ \prod_{x} \delta[U^{(j)}_x - U_0(x,0)] \right\} e^{S_{QCD}}}{\int D U_0(x,0) D U_k D \bar{\psi} D \psi \left\{ \prod_{x} \delta[U^{(k)}_x - U_0(x,0)] \right\} e^{S_{QCD}}}
\]

\[
= \frac{1}{Z} \frac{\int D U_0(x,0) D U_k D \bar{\psi} D \psi \left\{ \prod_{x} \delta[U^{(j)}_x - U_0(x,0)] \right\} e^{S_{QCD}}}{\int D U_0(x,0) D U_k D \bar{\psi} D \psi \left\{ \prod_{x} \delta[U^{(k)}_x - U_0(x,0)] \right\} e^{S_{QCD}}}
\]

both the numerator and denominator on the rhs have the interpretation of a probability

\[
\text{Prob}[U^{(j)}] = \frac{1}{Z} \int D U_0(x,0) D U_k D \bar{\psi} D \psi \left\{ \prod_{x} \delta[U^{(j)}_x - U_0(x,0)] \right\} e^{S_{QCD}}
\]
For numerical simulation of this system:

1. Update all d.o.f in the usual way, *except* for timelike links at $t=0$.

2. Update timelike links at $t=0$ simultaneously, choosing one of the M effective spin configurations via the Metropolis algorithm.

3. Keep track of the number of times N_n ($n=1,...,M$) that each member of the set is selected by Metropolis.
\textbf{Prob} [U^{(j)}] \text{ is just the probability for the j-th configuration to be found on the t=0 timeslice.}

Let \(N_j \) be the number of times the j-th configuration is selected in a Monte Carlo simulation,

Let \(N_{\text{tot}} \) be the total number of updates of the t=0 timeslice. Then

\[
\text{Prob}[U^{(j)}] = \lim_{N_{\text{tot}} \to \infty} \frac{N_j}{N_{\text{tot}}}
\]

and this gives us the \textbf{relative weights} of the effective Polyakov line action:

\[
\frac{\exp \left[S_P[U^{(j)}] \right]}{\exp \left[S_P[U^{(k)}] \right]} = \lim_{N_{\text{tot}} \to \infty} \frac{N_j}{N_k}
\]

From this information we can either test anyone’s proposal for \(S_p \), or, if we are lucky, deduce \(S_p \) from the data.

(For the potential part of the action, we don’t need luck.)
Let λ parametrize a path $U_x(\lambda)$ through the configuration space of Polyakov lines. We can use the method of relative weights to compute derivatives $dS_p/d\lambda$.

Let $U^{(i)}$ correspond to $\lambda = \lambda_0 + \Delta \lambda$ and $U^{(k)}$ correspond to $\lambda = \lambda_0 - \Delta \lambda$. Then

$$
\left(\frac{dS_P[U_x(\lambda)]}{d\lambda} \right)_{\lambda=\lambda_0} \approx \frac{1}{2\Delta \lambda} \left\{ \log \frac{N_j}{N_{tot}} - \log \frac{N_k}{N_{tot}} \right\}
$$

More generally: Choose the set of configurations $\{U_x^{(n)} = U_x(\lambda_n), \ n=1,2,...,M\}$ and

$$
\lambda_n = \lambda_0 + \left(n - \frac{M + 1}{2} \right) \Delta \lambda , \quad n = 1, 2, ..., M
$$

for sufficiently small $\Delta \lambda$ we have

$$
\left(\frac{dS_P[U_x(\lambda)]}{d\lambda} \right)_{\lambda=\lambda_0} \approx \text{slope of log } \frac{N_n}{N_{tot}} \text{ vs. } \lambda_n
$$
The strategy is:

- First find S_p at $\mu=0$ from S_{QCD}.
- Then obtain S^μ_p at finite μ.
- From there, if the sign problem is mild, solve the theory by any means available (reweighting, flux representation, stochastic quantization, mean field…) to determine the phase diagram.

This is a tall order. First step (and the main topic of this talk): can we actually determine S_p by the relative weights method, even at $\mu=0$?

For starters, make life easy. SU(2) gauge group (no sign problem, of course), and scalar matter.
First, can we determine S_p by relative weights in a case where we already know the answer?

Choose: **SU(2)** gauge group, $\beta=1.2$ (strong coupling), $N_t = 4$, no matter fields. S_p is readily computed via strong-coupling/character expansion methods:

$$S_P = \beta P \sum_{x} \sum_{i=1}^{3} P_x P_{x+i},$$

where

$$P_x \equiv \frac{1}{2} \text{Tr} U_x$$

$$\beta P = 4 \left[1 + 4N_t \left(\frac{I_2(\beta)}{I_1(\beta)} \right)^4 \right] \left(\frac{I_2(\beta)}{I_1(\beta)} \right)^{N_t}.$$
S_p divides into kinetic + potential pieces $S_p = K_p + V_p$ where

$$K_P = \frac{1}{2} \beta_P \sum_x \sum_{i=1}^3 (P_x P_{x+i} - 2P_x^2 + P_x P_{x-i})$$

$$V_P = 3 \beta_P \sum_x P_x^2$$

First, we determine V_p by relative weights. Choose a set of configurations (timelike links at $t=0$) consisting of link variables constant in space, but varying in amplitude

$$U_x^{(n)} = (P_0 + a_n) \mathbb{1} + i \sqrt{1 - (P_0 + a_n)^2} \sigma_3$$

$$a_n = \left(n - \frac{1}{2}(M + 1)\right) \Delta a , \quad n = 1, 2, ..., M$$

so in this case the path parameter is $\lambda = a$, and it is easy to see that

$$\frac{1}{L^3} \left(\frac{dS_P(U_x(a))}{da}\right)_{a=0} = \frac{1}{L^3} \frac{dV_P(P_0)}{dP_0}$$

where $L^3 = \text{spatial volume.}$
Here is the data, evaluated at \(L = 12 \) \((12^3 \times 4 \text{ lattice})\) and \(\beta = 1.2, \ P_0 = 0.5 \)

The slope of the line gives us \((dS/da)/\text{vol} = (dV_P/dP_0)/\text{vol} \) at \(P_0 = 0.5 \).
Repeating the calculation for various values of P_0, we find that $\frac{dV_p}{dP_0}$ is linear in P_0:

Integrating, and dropping an irrelevant constant of integration, we find

\[
V(P_x) = \begin{cases}
0.1721(8) \sum_x \frac{1}{2} P_x^2 & \text{relative weights method} \\
0.1710 \sum_x \frac{1}{2} P_x^2 & \text{strong-coupling expansion}
\end{cases}
\]
Now for the kinetic term, which by definition $= 0$ for spatially constant configurations. We choose a set of plane wave deformations around a constant background

$$U^{(n)}_x = P^{(n)}_x \mathbb{1} + i \sqrt{1 - (P^{(n)}_x)^2} \sigma_3$$

$$P^{(n)}_x = P_0 + a_n \cos(k \cdot x)$$

$$k_i = \frac{2\pi}{L} m_i$$

it is convenient to let $\lambda = a^2$ be the path parameter. We compute $dS_P/d(a^2)$ as before, from the slope of $\log(N_n/N_{tot})$ vs. a^2, at fixed k and P_0, and define lattice momentum as usual:

$$P_0 = 0.5$$

$$k_L^2 \equiv 4 \sum_{i=1}^{3} \sin^2\left(\frac{1}{2} k_i\right)$$
Then \[\frac{1}{L^3 \frac{dS_P}{d(a^2)}} = -A k_L^2 + B \], and from runs at other values of \(P_0 \) we find that the constants \(A \) and \(B \) are independent of \(P_0 \). Then we have

\[
S_P[U_x(a)] = L^3 \{ -A a^2 k_L^2 + B a^2 + f(P_0) \}
\]

and from the data on the potential, the constant of integration \(f(P_0) = C P_0^2 \) is determined. Expressing \(a^2 k_L^2 \) in terms of Polyakov lines \(P_x \), we find

\[
S_P = 4A \sum_x \sum_{i=1}^{3} P_x P_{x+i} + \left[(B - 6A)a^2 + (C - 12A)P_0^2 \right] L^3
\]

with

\[
A = 7.3(2) \times 10^{-3} \quad B = 4.30(3) \times 10^{-2} \quad C = 8.61(4) \times 10^{-2}
\]

With these numbers, we find that \(B-6A \) and \(C-12A \) are consistent with zero, so finally

\[
S_P = \left\{ \begin{array}{ll}
0.0292(8) \sum_x \sum_{i=1}^{3} P_x P_{x+i} & \text{(relative weights method)} \\
0.0285 \sum_x \sum_{i=1}^{3} P_x P_{x+i} & \text{(strong-coupling expansion)}
\end{array} \right.
\]
Conventions: The potential term is **local**. The kinetic term **vanishes** for spatially constant configurations. Then

\[V_P = \sum_{x} \mathcal{V}(U_x) \quad \text{and} \quad \mathcal{V}(U) = \frac{1}{L^3} S_P(U) \]

(By definition, \(K_P \equiv S_P[U_x] - V_P[U_x] \))

The point is that to compute the potential, we only have to compute the action for \(x \)-independent configurations \(U \). So as at strong coupling, we again choose the set

\[U_x^{(n)} = (P_0 + a_n) \mathbb{I} + i \sqrt{1 - (P_0 + a_n)^2} \sigma_3 \]

\[a_n = \left(n - \frac{1}{2} (M + 1) \right) \Delta a \quad , \quad n = 1, 2, \ldots, M \]

and compute \(dS_p/da \), but this time at \(\beta = 2.2 \), \(N_t = 4 \).
so we compute, as before

$$\frac{1}{L^3} \frac{dV_P}{dP_0} = \frac{1}{L^3} \frac{dS_P}{d\alpha}$$

and fit to a polynomial. A cubic polynomial $c_1 P_0 + c_2 P_0^2 + c_3 P_0^3$ works nicely...
But wait! **This violates center symmetry!** In SU(2), we must have $V(P) = V(-P)$, and therefore the derivative must be an odd function. This *seems* to be violated by the $c_2 P_0^2$ term. So let’s try only odd polynomial fits ($= \text{expansion of } V(P) \text{ in } j=\text{integer } \text{SU}(2) \text{ characters})$...

![Graph showing data points and fits]

Rather poor fits. A little like fitting a step function with a truncated Fourier series.
Could it be that \(V_p(P) \) is a non-analytic function? In other words

\[
\frac{1}{L^3} \frac{dV_P}{dP_0} = c_1 P_0 + c_2 \text{sign}(P_0) P_0^2 + c_3 P_0^3
\]

so that \(dV_p/dP \) is still an odd function. Look at the full range \(-1 \leq P_0 \leq 1\):

Here we plot the derivative at \(P_0 > 0 \), and also at \(P_0 < 0 \) multiplied by \(-1\). Since the data points for \(\pm P_0 \) fall on top of each other, \(dV_p/dP \) is an odd function, as it must be.
Integrating w.r.t. P_0, we find for the potential term of the effective Polyakov line action

$$V_P = \sum_x \left(\frac{1}{2} c_1 P_x^2 + \frac{1}{3} c_2 |P_x|^3 + \frac{1}{4} c_3 P_x^4 \right)$$

$c_1 = 4.61(2)$, $c_2 = -4.5(1)$, $c_3 = 1.77(8)$

which is center-symmetric but non-analytic. It is not the form expected from strong-coupling expansions.

One might have thought instead that an analytic expression such as

$$V_P = \sum_x \sum_{j=1}^{j_{max}} c_j \chi_j(U_x)$$

would be a good approximation, for relatively small j_{max}. That seems wrong.
Towards the kinetic term

To help determine the kinetic term we consider two different sets of configurations.

A. Plane Wave deformations around a constant background

\[U^{(n)}_x = P^{(n)}_x \mathbb{1} + i \sqrt{1 - (P^{(n)}_x)^2 \sigma_3} \]
\[P^{(n)}_x = P_0 + a_n \cos(k \cdot x) \]
\[k_i = \frac{2\pi}{L} m_i \]

The \(a \)-dependence of \(S_P \) begins at \(O(a^2) \), so again we take \(\lambda = a^2 \), and compute

\[\frac{1}{L^3} \left. \frac{dS_P}{d(a^2)} \right|_{a=0} \]

But unlike the case at strong couplings, this path derivative depends on \(P_0 \).
B. Pure plane waves \((P_0 = 0)\)

\[U^{(n)}_x = P^{(n)}_x \mathbb{1} + i \sqrt{1 - (P^{(n)}_x)^2} \sigma_3 \]

\[P^{(n)}_x = A_n \cos(\mathbf{k} \cdot \mathbf{x}) \]

\[A_n = A_0 + \left(n - \frac{1}{2} (M + 1) \right) \Delta A , \quad n = 1, 2, ..., M \]

and this time we compute

\[\frac{dS_P}{dA} \]

by the relative weights method.
It turns out that the action which fits the data, for configurations of Types A and B, is

\[
S_P = 2c \left\{ \sum_{xy} P_x \left(\sqrt{-\nabla^2_L + gP_{av}^2 + g'\Delta P^2} \right) P_y - \sum_x \sqrt{gP_{av}^2 + g'\Delta P^2 P_x^2} \right\} \\
+ \sum_x \left(\frac{1}{2} c_1 P_x^2 + \frac{1}{3} c_2 |P_x|^3 + \frac{1}{4} c_3 P_x^4 \right)
\]

where

\[
P_{av} = \frac{1}{L^3} \sum_x P_x \quad \text{and} \quad \Delta P^2 = \frac{1}{L^3} \sum_x (P_x - P_{av})^2
\]

It can be shown that the \(g' \Delta P^2 \) term doesn’t contribute to the \(dS_p/d(a^2) \) path derivative (from Type A), and of course \(g P_{av}^2 = 0 \) for type B configurations. So we use Type A to determine constants \(c \) and \(g' \), and then Type B to determine \(g' \).
Here is the data (red) and best fit (green) to
$$\frac{1}{L^3} \frac{dS_P}{d(a^2)} \bigg|_{a=0}$$
from the Type A configurations
here is the data (red) and best fit (green) to \[\frac{dS_P}{dA} \]

from type B configurations, which determines \(g' = 3.45(4) \).
The relative weights method has been used to investigate the effective Polyakov line action corresponding to pure SU(2) gauge theory at $\beta = 2.2$ and $N_t = 4$. Denoting the action as a sum $S_p = K_p + V_p$ of a kinetic and a potential term:

- The potential term is found to be center symmetric, but non-analytic:

$$V_P = \sum_x \left(\frac{1}{2} c_1 P_x^2 + \frac{1}{3} c_2 |P_x|^3 + \frac{1}{4} c_3 P_x^4 \right)$$

- Based on plane wave data, the kinetic term is conjectured to be

$$K_P = 2c \left\{ \sum_{xy} P_x \left(\sqrt{-\nabla_L^2 + gP_{av}^2 + g'\Delta P^2} \right)_{xy} P_y \right. - \left. \sum_x \sqrt{gP_{av}^2 + g'\Delta P^2} P_x \right\}$$
Next Steps...

- Study the β-T dependence of the various coefficients in S_p, in particular the evolution from strong to weaker couplings.
- See if the conjectured K_p is valid for more complicated configurations.
- Move on to SU(3), matter fields, and, of course, the sign problem.
Extra Slides
We want to compare V_p on a $12^3 \times 4$ lattice at $\beta = 2.2$ (confined phase) and at $\beta = 2.4$ (deconfined phase).

For this purpose it is useful to plot

$$\frac{1}{L^3} \frac{dV_P}{d(P_0^2)} = \frac{1}{L^3} \frac{1}{2P_0} \frac{dV_P}{dP_0} \quad \text{vs.} \quad P_0^2$$

When the data is plotted this way, a curious feature does show up...
Note the “dip” near $P_0=0$ in the deconfined phase. I have no idea about its significance.
S^μ_{QCD} is obtained from S_{QCD} at $\mu=0$ by the replacement at timeslice $t=0$

$$S^\mu_{QCD} = S_{QCD} \left[U_0(x,0) \rightarrow e^{N_t\mu} U_0(x,0), U_0^\dagger(x,0) \rightarrow e^{-N_t\mu} U_0^\dagger(x,0) \right]$$

According to the strong coupling/hopping parameter expansion, we obtain S^μ_P from S_P by the same replacement:

$$U_x \rightarrow e^{N_t\mu} U_x \quad , \quad U_x^\dagger \rightarrow e^{-N_t\mu} U_x^\dagger$$

Another option: expand the domain of $U_0(x,0)$ from SU(N) to U(N), allowing these links to take on values

$$U_0(x,0) = \exp[i\theta] \times \text{SU}(N) \text{ matrices}.$$

If we can determine S_P for these configurations, then we analytically continue

$$\theta \rightarrow -i N_t \mu$$

to get S^μ_P.

finite chemical potential
Now we add a matter field in the fundamental representation of the gauge group.

Keep it simple: a fixed-modulus scalar field, which can be mapped onto an SU(2)-valued field Φ. The action is

$$S = \beta \sum_{plaq} \frac{1}{2} \text{Tr}[UUU^\dagger U^\dagger] + \gamma \sum_{x,\mu} \frac{1}{2} \text{Tr}[\phi^\dagger(x) U_\mu(x) \phi(x + \vec{\mu})]$$

Center symmetry is broken explicitly, and the model has only one phase in an infinite volume. There is, however, a line of 1st order transitions going into a line of sharp crossovers. At $\beta=2.2$, the crossover is around $\gamma = 0.84$.

![Plaquette Energy](image)
Here is the data for dV_P/dP_0 at $\beta=2.2$, $\gamma=0.75$, $N_t=4$. ($<P_x> = 0.03$)

Best fit to the data yields (after integration wrt P_0)

$$V_P = \sum_{x} \left(c'_0 P_x + \frac{1}{2} c'_1 P_x^2 + \frac{1}{3} c'_2 |P_x|^3 + \frac{1}{4} c'_3 P_x^4 \right)$$

$c'_{0}=.025(1)$, $c'_{1} = 4.70(2)$, $c'_{2}=-4.70(8)$, $c'_{3}=1.91(7)$