Vortex liquid in electromagnetically superconducting vacuum due to strong magnetic field: numerical lattice results

V. V. Braguta, P. V. Buividovich, M. N. Chernodub, A. Yu. Kotov and M. I. Polikarpov

I. Any superconductor has zero electrical DC resistance

II. Any superconductor is an enemy of the magnetic field:
 1) weak magnetic fields are expelled by all superconductors (the Meissner effect)
 2) strong enough magnetic field always kills superconductivity
The claim:

In a background of strong enough magnetic field the vacuum becomes a superconductor.

The superconductivity emerges in empty space. Literally, “nothing becomes a superconductor”.

The claim seemingly contradicts textbooks which state that:
1. Superconductor is a material (= a form of matter, not an empty space)
2. Weak magnetic fields are suppressed by superconductivity
3. Strong magnetic fields destroy superconductivity
General features

Some features of the superconducting state of vacuum:

1. spontaneously emerges above the critical magnetic field

 \[B_c \approx 10^{16} \text{ Tesla} = 10^{20} \text{ Gauss} \]

 or

 \[eB_c \approx m^2_\rho \approx 31 \ m^2_\pi \approx 0.6 \ \text{GeV}^2 \]

2. usual Meissner effect does not exist

3. perfect conductor (= zero DC resistance) in one spatial dimension (along the axis of the magnetic field)

4. insulator in other (perpendicular) directions
Too strong critical magnetic field?

\[eB_c \approx m_{\rho}^2 \approx 31 \, m_{\pi}^2 \approx 0.6 \, \text{GeV}^2 \]

Over-critical magnetic fields (of the strength \(B \approx 2\ldots3 \, B_c \)) may be generated in ultraperipheral heavy-ion collisions (duration is short, however – detailed calculations are required)

+ Vladimir Skokov, private communication.
Approaches to the problem:

0. General arguments;

1. Effective bosonic model for electrodynamics of ρ mesons based on vector meson dominance
 [M.Ch., arXiv:1008.1055]

2. Effective fermionic model (the Nambu-Jona-Lasinio model)
 [M.Ch., arXiv:1101.0117]

3. Nonperturbative effective models based on gauge/gravity duality (AdS/CFT)
 [Erdmenger, Kerner, Strydom (Munich, Germany), arXiv:1106.4551]
 [Callebaut, Dudal, Verschelde (Gent U., Belgium), arXiv:1105.2217]

5. Numerical simulation of vacuum
 ITEP Lattice Group, Moscow, arXiv:1104.3767 + (this talk)
Pairing of quarks in strong magnetic field

Well-known “magnetic catalysis”:

S.P. Klevansky and R. H. Lemmer (’89); H. Sugaumna and T. Tatsumi (’91); V. P. Gusynin, V. A. Miransky and I. A. Shovkovy (’94, ’95, ’96,...)

attractive channel: spin-0 flavor-diagonal states

 enhanced chiral symmetry breaking

This talk:

attractive channel: spin-1 flavor-offdiagonal states (quantum numbers of ρ^{\pm} mesons)

electrically charged condensates: leads to electromagnetic superconductivity
Key players: ρ mesons and vacuum

- ρ mesons:
 - electrically charged ($q=\pm e$) and neutral ($q=0$) particles
 - spin: $s=1$, vector particles
 - quark contents: $\rho^+ = ud$, $\rho^- = du$, $\rho^0 = (uu-dd)/2^{1/2}$
 - mass: $m_\rho = 775.5$ MeV
 - lifetime: $\tau_\rho = 1.35$ fm/c (very short: size of the ρ meson is 0.5 fm)

- vacuum: QED+QCD, zero temperature and density
Naïve qualitative picture of quark pairing in the electrically charged vector channel: ρ mesons

- Energy of a relativistic particle in the external magnetic field B_{ext}:

$$\varepsilon_{n,s_z}^2(p_z) = p_z^2 + (2n - 2s_z + 1)eB_{\text{ext}} + m^2$$

momentum along the magnetic field axis
nonnegative integer number
projection of spin on the magnetic field axis

(the external magnetic field is directed along the z-axis)

- Masses of ρ mesons and pions in the external magnetic field

$$m_{\pi^\pm}^2(B_{\text{ext}}) = m_{\pi^\pm}^2 + eB_{\text{ext}} \quad \text{becomes heavier}$$
$$m_{\rho^\pm}^2(B_{\text{ext}}) = m_{\rho^\pm}^2 - eB_{\text{ext}} \quad \text{becomes lighter}$$

- Masses of ρ mesons and pions:

$$m_\pi = 139.6 \text{ MeV}, \quad m_\rho = 775.5 \text{ MeV}$$
Condensation of \(\rho \) mesons

The \(\rho^\pm \) mesons become massless and condense at the critical value of the external magnetic field

\[
B_c = \frac{m^2}{e} \approx 10^{16} \text{ Tesla}
\]

masses in the external magnetic field

Kinematical impossibility of dominant decay modes

The pion becomes heavier while the rho meson becomes lighter

- The decay \(\rho^\pm \rightarrow \pi^\pm \pi^0 \)
 stops at certain value of the magnetic field

\[
m_{\rho^\pm}(B_{\rho^\pm}) = m_{\pi^\pm}(B_{\rho^\pm}) + m_{\pi^0}
\]

- A similar statement is true for \(\rho^0 \rightarrow \pi^+ \pi^- \)
Structure of the condensates

In terms of quarks, the state $\rho_1 = -i\rho_2 = \rho$ implies

$$\langle \bar{u}\gamma_1 d \rangle = \rho(x_{\perp}), \quad \langle \bar{u}\gamma_2 d \rangle = i\rho(x_{\perp})$$

Depend on transverse coordinates only

(\text{the same structure of the condensates in the Nambu-Jona-Lasinio model})

- The absolute value of the condensate:

$$|\rho_0| = \begin{cases} \sqrt{\frac{e(B_{\text{ext}} - B_c)}{2g_s^2}}, & B_{\text{ext}} \geq B_c \\ 0, & B_{\text{ext}} < B_c \end{cases}$$

Second order (quantum) phase transition, critical exponent = 1/2
Condensates of ρ mesons, solutions

Superconducting condensate
(charged rho mesons)

Superfluid condensate
(neutral rho mesons)

$B = 1.01 B_c$

New objects, topological vortices, made of the rho-condensates

The phases of the rho-meson fields wind around vortex centers, at which the condensates vanish.

Anisotropic superconductivity
(via an analogue of the London equations)

- Apply a weak electric field E to an ordinary superconductor
- Then one gets accelerating electric current along the electric field:

$$\frac{\partial \vec{J}_{GL}}{\partial t} = m_A^2 \vec{E}$$

[London equation]

- In the QCDxQED vacuum, we get an accelerating electric current along the magnetic field B:

$$\frac{\partial}{\partial t} \langle J_3 \rangle = -\frac{2e^3}{g_s^2} (B_{\text{ext}} - B_c) E_3$$

$$\frac{\partial}{\partial t} \langle J_1 \rangle = \frac{\partial}{\partial t} \langle J_2 \rangle = 0$$

(for $B \geq B_c$)

Written for an electric current averaged over one elementary (unit) rho-vortex cell

(similar results in NJL)
Numerical simulations in the magnetic field background

\[\eta(B) = C_\rho \cdot (eB - eB_c) \]

[qualitatively realistic vacuum, quantitative results may receive corrections (20%-50% typically)]

Theory:
\[\eta \sim \sqrt{B - B_c} \]
for \(B \geq B_c \)

The ρ meson condensate is difficult to observe in lattice simulations due to strong inhomogeneities of the ground state

1) The phase of the ρ meson condensate is a lively function of the transverse coordinates (x,y): its average is zero (analytically). But the condensate itself is nonzero.

2) The phase of the condensate jumps by 2π around the ρ vortices.

3) The ρ vortices move even within the same configuration (= neither straight nor static)
Can we visualise the ρ meson condensate?

Observable:

$$\langle \Box \rangle_W = \frac{\langle W \Box \rangle}{\langle W \rangle} - \langle \Box \rangle$$

The color field strength tensor

$$\Box = U_{\mu\nu}(n, \tau)$$

in the presence of the Wilson loop (quark source) “W”
Observables:

The ρ meson field $\rho(x) = \bar{u}(x)\gamma_+d(x)$; $\gamma_+ = \gamma_1 + i\gamma_2$ in the background of magnetic field B and SU(2) gauge configuration $A^{SU(2)}$

$$\phi(x) = \langle \rho(0)\rho(x) \rangle_{A^{SU(2)}, B}$$

transforms as a charged field under the electromagnetic $U(1)$:

$$U(1)_{\text{em}} : \quad \phi(x) \rightarrow e^{i\omega(x)}\phi(x)$$

Normalized energy:

$$E(x) = \frac{|D_\mu \phi(x)|^2}{|\phi(x)|^2}$$

Normalized electric current:

$$j_\mu(x) = \frac{\phi^*(x)\overrightarrow{D_\mu}\phi(x) - \phi^*(x)\overleftarrow{D_\mu}\phi(x)}{2i|\phi(x)|^2}$$

Vortex density (2π singularities in the phase of the ρ meson field):

$$\nu(x) = \text{sing arg } \phi(x) = \frac{\varepsilon^{ab}}{2\pi} \partial_a \partial_b \text{ arg } \phi(x)$$
Expectations:

[J. Van Doorsselaere, H. Verschelde, M. Ch, arXiv:1111.4401]

Ground state: hexagonal lattice arrangement of the vortices along the magnetic field B

However: other lattice arrangements (square, rhombic, etc) are very close (0.1%) in energy the hexagonal order may be destroyed by fluctuations.

Expected reality: quantum fluctuations move and disturb vortices. They are no more straight parallel and static.
Normalized energy of the ρ meson condensate in the transverse plane.

Check x-y slice at fixed time t and distance z.

Instead of a regular lattice structure we see an irregular vortex pattern (vortex liquid?) The vortices move as we move the slice.
Normalized energy of the ρ meson condensate along the magnetic field.

Check x-z slice at fixed time t and coordinate y.

Vortices are not straight and static: they are curvy moving one-dimensional (in 3d) structures.
Electric currents around vortices:

Theory:
It is indeed a vortex liquid!

Vortex density-density correlators:
(similar pictures for other values of the magnetic field strength)

Real superconductors possess a vortex phase:

Vortex-matter phase diagram in YBa$_2$Cu$_3$O$_y$

Conclusions

- In a sufficiently strong magnetic field, condensates with ρ^{\pm} meson quantum numbers are formed spontaneously.

- The vacuum (= no matter present, = empty space, = nothing) becomes electromagnetically superconducting.

- The superconductivity is anisotropic: the vacuum behaves as a perfect conductor only along the axis of the magnetic field.

- New type of topological defects, "ρ vortices", emerge.

- The ground state of ρ vortices is the Abrikosov-type lattice in transverse (w.r.t. the axis of magnetic field) directions.

- The liquid of the vortices is seen in lattice simulations.

- (Signatures of) the superconducting phase can be checked at LHC?
Backup
Topological structure of the ρ mesons condensates
Simplest approach: Electrodynamics of ρ mesons

- Lagrangian (based on vector dominance models):

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \rho^{\dagger}_{\mu\nu} \rho^{\mu\nu} + m^2_{\rho} \rho^{\dagger}_{\mu} \rho^\mu$$

$$- \frac{1}{4} \rho^{(0)}_{\mu\nu} \rho^{(0)}_{\mu\nu} + \frac{m^2_{\rho}}{2} \rho^{(0)}_{\mu} \rho^{(0)}_{\mu} + \frac{e}{2g_s} F^{\mu\nu} \rho^{(0)}_{\mu\nu}$$

- Tensor quantities

$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu,$$

$$f^{(0)}_{\mu\nu} = \partial_\mu \rho^{(0)}_\nu - \partial_\nu \rho^{(0)}_\mu,$$

$$\rho^{(0)}_{\mu\nu} = f^{(0)}_{\mu\nu} - ig_s (\rho^{\dagger}_{\mu} \rho_\nu - \rho_{\mu} \rho^{\dagger}_\nu)$$

$$\rho_{\mu\nu} = D_\mu \rho_\nu - D_\nu \rho_\mu,$$

- Covariant derivative

$$D_\mu = \partial_\mu + ig_s \rho^{(0)}_\mu - ieA_\mu$$

- Kawarabayashi-Suzuki-Riadzuddin-Fayyazuddin relation

$$g_s \equiv g_{\rho \pi \pi} = \frac{m_{\rho}}{\sqrt{2} f_{\pi}} = 5.88$$

$$g_s \gg e \equiv \sqrt{4\pi \alpha_{\text{e.m.}}} \approx 0.303$$

- Gauge invariance

$$U(1):
\left\{
\begin{align*}
\rho^{(0)}_\mu(x) &\to \rho^{(0)}_\mu(x), \\
\rho_\mu(x) &\to e^{i\omega(x)} \rho_\mu(x), \\
A_\mu(x) &\to A_\mu(x) + \partial_\mu \omega(x)
\end{align*}
\right.$$
Too quick for the condensate to be developed, but signatures may be seen due to instability of the vacuum state.

\(\rho \)-meson vacuum state between the ions in ultraperipheral collisions.

\[
B = 0 \quad \rightarrow \quad B > B_c \quad \rightarrow \quad B > B_c \quad \rightarrow \quad B = 0
\]

“no condensate” vacuum state

instability due to magnetic field

rolling towards new vacuum state

rolling back to “no condensate” vacuum state

Emission of \(\rho \) mesons
Anisotropic superconductivity
(Lorentz-covariant form of the London equations)

We are working in the vacuum, thus the transport equations may be rewritten in a Lorentz-covariant form:

\[\partial_{[\mu} j_{\nu]} = \kappa \frac{(F \cdot \tilde{F})}{(F \cdot F)} \tilde{F}_{\mu \nu} \]

Electric current averaged over one elementary rho-vortex cell

A scalar function of Lorentz invariants. In this particular model:

\[\kappa = (e^3/g_s^2) \sqrt{(F \cdot F)/2 - B_c} \]

(slightly different form of \(\kappa \) function in NJL)

Lorentz invariants:

\[(F \cdot \tilde{F}) = F_{\mu \nu} \tilde{F}_{\mu \nu} \equiv 4(\vec{B} \cdot \vec{E}) \]
\[(F \cdot F) = F_{\mu \nu} F_{\mu \nu} \equiv 2(\vec{B}^2 - \vec{E}^2) \]
\[\tilde{F}_{\mu \nu} = \frac{1}{2} \varepsilon_{\mu \nu \alpha \beta} F^{\alpha \beta} \]

If \(B \) is along \(x_3 \) axis, then we come back to

\[\frac{\partial}{\partial t} \langle J_3 \rangle = -\frac{2e^3}{g_s^2} (B_{\text{ext}} - B_c) E_3 \]

and

\[\frac{\partial}{\partial t} \langle J_1 \rangle = \frac{\partial}{\partial t} \langle J_2 \rangle = 0 \]