CONFORMAL or CONFINING?
higher-representation gauge theories on the lattice

B. Svetitsky
Tel Aviv University

with Y. Shamir and T. DeGrand

SU(2,3,4) gauge theories with $N_f = 2$ fermions in the SYM$_2$ rep

1. Confining or conformal? And what lies in between
2. The running coupling at $m = 0$: Schrödinger Functional (= background field method)
3. Phase diagrams on a finite lattice (m, “T” ≠ 0)
4. Mass anomalous dimension $\gamma(g^2)$
POSSIBILITIES for IR PHYSICS

- Confinement & χSB \rightarrow RUNNING [QCD]
 - or WALKING [ETC — extended technicolor]
- IRFP — conformal theory \rightarrow STANDING STILL [unparticles?]

WALKING and IRFP [the *conformal window*] are HARD CASES:

- Running is slow — so strong coupling in IR is also strong coupling in UV (i.e., at lattice cutoff)
 i.e., we require $L \gg a$ for a weak-coupling continuum limit.
 OTHERWISE you are looking at a narrow range of scales!
- If merely $L \gg a$, then you might be far from the IRFP at your largest scale L — so you miss the scale invariance.
- Scale invariance (approximate for WALKING) means all particle masses $\sim m_q^{1/y_m}$ with the same y_m. Hard to tell the two apart.
- Gauge coupling is irrelevant; m_q and $1/L$ are *relevant* couplings.
 $m_q \rightarrow 0$: really, really BAD finite-size effects.

Schrödinger functional turns finite volume from a *hindrance* to a *method*.
GAUGE GROUPS, REPs, and \(N_f \)

(Dietrich & Sannino, PRD 2007)

Our work: \(N = 2, 3, 4; \) \(\text{REP=SYM=3, 6, 10}; \) \(N_f = 2 \)

Is there an IRFP?
Ladder approx says NO
THE β FUNCTION in the MASSLESS THEORY: the Schrödinger Functional

Continuum SF definition of $g(L)$:

(Lüscher et al., ALPHA collaboration)

- Hypercubical Euclidean box, volume L^4, massless limit
- Fix the gauge field on the two time boundaries
 \Rightarrow background field — unique classical minimum of $S_{YM}^{cl} = \int d^4x F_{\mu\nu}^2$. Make sure L is the only scale.
- Calculate (if you can)

$$
\Gamma \equiv - \log Z = \text{tree-level + one-loop + \cdots} \\
= \left(\frac{1}{g^2(1/\mu)} + \frac{b_1}{32\pi^2} \log(\mu L) + \cdots \right) S_{YM}^{cl} \\
\equiv \frac{1}{g^2(L)} S_{YM}^{cl} \quad \text{nonperturbatively!}
$$
THE \(\beta\) FUNCTION in the MASSLESS THEORY: the Schrödinger Functional

Continuum SF definition of \(g(L)\):

- Hypercubical Euclidean box, volume \(L^4\), massless limit
- Fix the gauge field on the two time boundaries
 \(\Rightarrow\) **background field** — unique classical minimum of \(S_{YM}^{cl} = \int d^4x F_{\mu\nu}^2\). Make sure \(L\) is the only scale.
- Calculate (if you can)

\[
\Gamma \equiv -\log Z = \text{tree-level} + \text{one-loop} + \cdots
= \left(\frac{1}{g^2(1/\mu)} + \frac{b_1}{32\pi^2} \log(\mu L) + \cdots \right) S_{YM}^{cl}
\equiv \frac{1}{g^2(L)} S_{YM}^{cl}\quad \text{nonperturbatively!}
\]

LATTICE THEORY:

- Wilson fermions
 + clover term + fat links (\(nHYP = \text{normalized HYPercubic}\))
- SF: fix spatial links \(U_i\) on time boundaries \(t = 0, L\)
 + give fermions a spatial twist
A PROPOS CHIRAL SYMMETRY:

- Define m_q via AWI

$$\partial_\mu A^{a\mu} = 2m_q P^a \implies m_q \equiv \frac{1}{2} \left. \frac{\partial_4 \langle A^b_4(t) \mathcal{O}_b(t' \equiv 0, \vec{p} = 0) \rangle}{P^b(t) \mathcal{O}_b(t' \equiv 0, \vec{p} = 0) \rangle} \right|_{t = L/2}$$

- Find $\kappa_c(\beta)$ by setting $m_q = 0$. Work directly at κ_c: stabilized by SF BC's!

EXTRACTING PHYSICS

1. Fix lattice size L, bare couplings $\beta = 6/g_0^2$, $\kappa \equiv (8 + 2m_0a)^{-1} = \kappa_c(\beta)$

2. Calculate $1/g^2(L)$ and $1/g^2(2L)$. Use common lattice spacing ($= \text{UV cutoff}$) a.

3. Result: Discrete Beta Function

$$B(u, 2) = \frac{1}{g^2(2L)} - \frac{1}{g^2(L)},$$

a function of $u \equiv 1/g^2(L)$.
The DISCRETE BETA FUNCTION — SU(2)/triplet

$u = 1/g^2$ (64 or 84)

$B(u, 2)$ crosses zero near the BZ coupling

\Rightarrow IRFP
The DISCRETE BETA FUNCTION — SU(2)/triplet

\[u = \frac{1}{g^2} (6^4 \text{ or } 8^4) \]

\[B(u,2) \] crosses zero near the BZ coupling

\(\Rightarrow \) IRFP
SLOW RUNNING IS ALMOST NO RUNNING

Let \(u(s) \equiv 1/g^2(s) \), and \(\tilde{\beta}(u) \equiv du/d\log s = 2\beta(g^2)/g^4 \). [We have been plotting \(B(u, 2) = u(2) - u(1) \).]

Slow running: \(\tilde{\beta}(u(s)) \simeq \tilde{\beta}(u(1)) — \text{quasi-conformal!} \)

Then

\[
\frac{u(s) - u(1)}{\log s} \simeq \tilde{\beta}(u(1))
\]
SLOW RUNNING IS ALMOST NO RUNNING

Let \(u(s) \equiv 1/g^2(s) \), and \(\tilde{\beta}(u) \equiv du/d\log s = 2\beta(g^2)/g^4 \). [We have been plotting \(B(u, 2) = u(2) - u(1) \).]

Slow running: \(\tilde{\beta}(u(s)) \simeq \tilde{\beta}(u(1)) — \text{quasi-conformal!} \)

Then

\[
\frac{u(s) - u(1)}{\log s} \simeq \tilde{\beta}(u(1))
\]

\[\implies \text{linear fit to } 1/g^2(\log L)\]

(improved action is crucial)
SLOW RUNNING IS ALMOST NO RUNNING

Let $u(s) \equiv 1/g^2(s)$, and $\tilde{\beta}(u) \equiv du/d\log s = 2\beta(g^2)/g^4$. [We have been plotting $B(u, 2) = u(2) - u(1)$.

Slow running: $\tilde{\beta}(u(s)) \approx \tilde{\beta}(u(1))$ — quasi-conformal!

Then

$$\frac{u(s) - u(1)}{\log s} \approx \tilde{\beta}(u(1))$$

\Rightarrow collapse data for different s.

\Rightarrow Reduced DBF $R(g^2) \approx \tilde{\beta}(g^2)$
NOW FOR SU(3)/sextet

Fits from $L = 6, 8, 12, 16$

SLOW running . . .

but does it cross zero?

Why did we stop?
PHASE DIAGRAM: (SU(3)/sextet)

THE WALL

in strong coupling:

\(m_q \) discontinuous in \(\kappa \), never zero

cf. SU(3) with large \(N_f \) fund rep

[cf. SU(2)/triplet: critical point at intersection]
PHASE DIAGRAM: (SU(3)/sextet)

Cf. QCD

No critical point
PHASE DIAGRAM: (SU(3)/sextet)

MOVING THE WALL:

Change the gauge action —

\[S_g = \frac{\beta}{2N_c} \sum \text{Tr} U_p + \frac{\beta_f}{2d_f} \sum \text{Tr} V_p \]

where \(V_p \) is made of fat links in the fermion rep (e.g. \(\beta_f = +0.5 \))
⇒ pushes the wall to stronger coupling:

An IRFP in the SU(3)/sextet theory*

*at low significance
MASS ANOMALOUS DIMENSION

Expected: $\gamma(g_*^2) \rightarrow 1$ at sill of conformal window
(Cohen & Georgi 1988; Kaplan, Lee, Son, Stephanov 2010)

Work with correlation functions on lattice:

$$\langle P^b(t) \mathcal{O}^b(t' = 0) \rangle|_{t = L/2} = Z_P Z_O e^{-m_\pi L/2}$$

$$\langle \mathcal{O}^b(t = L) \mathcal{O}^b(t' = 0) \rangle = Z_O^2 e^{-m_\pi L}$$

Take ratio, extract $Z_P(L)$, whence

$$\frac{Z_P(L)}{Z_P(L_0)} = \left(\frac{L}{L_0} \right)^{-\gamma}$$

assuming $\gamma \simeq \text{const}$ as $L_0 \rightarrow L$,

since the running is SLOW
MASS ANOMALOUS DIMENSION — SU(2)/triplet

\[\text{slope} = -\gamma_m(g^2) \]

Cf. one loop: \[\gamma = \frac{6C_2(R)}{16\pi^2} g^2 \]
Mass renormalization

slope = $-\gamma_m(g^2)$

Cf. one loop: $\gamma = \frac{6C_2(R)}{16\pi^2} g^2$
FINALLY, SU(4)/decuplet — compare all 3 theories

beta function $\tilde{b} = \frac{d}{d \log s} \left(\frac{1}{g^2 N} \right)$

$\gamma \rightarrow \sim 0.45$ — new universality?
SUMMARY

1. SU(2) gauge theory with \(N_f = 2 \) fermions in the SYM\(_2\) rep has an IRFP. SU(3), SU(4) might — at least, they run very slowly.

2. In each case, the mass anomalous dimension \(\gamma \) flattens out well short of 1.

THEORETICAL POINTS

Schwinger–Dyson eqns say these theories have no IRFP.

- Our fixed point(s) contradict the Schwinger–Dyson analysis.

SDEs also predict \(\gamma \simeq 1 \) near the sill of the conformal window (walking technicolor).

- For each \(N = 2, 3, 4 \) — \(\gamma \lesssim 0.5 \) means:
 1. We are deep in the conformal phase, or
 2. S–D eqns, model calculations are inapplicable here, too.
SUMMARY

1. SU(2) gauge theory with $N_f = 2$ fermions in the SYM_2 rep has an IRFP. SU(3), SU(4) might — at least, they run very slowly.

2. In each case, the mass anomalous dimension γ flattens out well short of 1.

THEORETICAL POINTS

Schwinger–Dyson eqns say these theories have no IRFP.

- Our fixed point(s) contradict the Schwinger–Dyson analysis.

SDEs also predict $\gamma \simeq 1$ near the sill of the conformal window (walking technicolor).

- For each $N = 2, 3, 4$ — $\gamma < 0.5$ means:
 1. We are deep in the conformal phase, or
 2. S–D eqns, model calculations are inapplicable here, too.

FOR THE FUTURE

γ is much easier to calculate than β. More anomalous dimensions are waiting . . . (⇒ “spectrum” of conformal theories)

. . . and also more gauge theories.