Low energy analysis of πN scattering and the pion-nucleon sigma term with Covariant Baryon Chiral Perturbation Theory

Jose Manuel Alarcón Soriano

Institut für Kernphysik
Johannes Gutenberg Universität

In colaboration with J. Martin Camalich and J. A. Oller.
Part I

Introduction
Introduction

- πN scattering is an important hadronic reaction that gives access to important questions related to strong interactions.

- At high energies:
 - Allows to study the baryonic spectrum of QCD together with their properties.

- At low energies:
 - Test the chiral dynamics of QCD.
 - Study the role of isospin violation.
 - Provides important information about the internal structure of the nucleon.

- At low energies, the spontaneously and explicitly broken chiral symmetry allow us to construct a perturbative theory for hadronic interactions \Rightarrow ChPT.

- ChPT is an EFT that allows us to apply perturbation theory to processes involving the Goldstone bosons.

- Unfortunately, dealing with baryons in ChPT is not so easy...
Introduction

- πN scattering is an important hadronic reaction that gives access to important questions related to strong interactions.
- **At high energies:**
 - Allows to study the baryonic spectrum of QCD together with their properties.
- **At low energies:**
 - Test the chiral dynamics of QCD.
 - Study the role of isospin violation.
 - Provides important information about the internal structure of the nucleon.
- At low energies, the spontaneously and explicitly broken chiral symmetry allow us to construct a perturbative theory for hadronic interactions \(\Rightarrow \) ChPT.
- ChPT is an EFT that allows us to apply perturbation theory to processes involving the Goldstone bosons.
- Unfortunately, dealing with baryons in ChPT is not so easy...
Introduction

- πN scattering is an important hadronic reaction that gives access to important questions related to strong interactions.

- At high energies:
 - Allows to study the baryonic spectrum of QCD together with their properties.

- At low energies:
 - Test the chiral dynamics of QCD.
 - Study the role of isospin violation.
 - Provides important information about the internal structure of the nucleon.

- At low energies, the spontaneously and explicitly broken chiral symmetry allow us to construct a perturbative theory for hadronic interactions \Rightarrow ChPT.

- ChPT is an EFT that allows us to apply perturbation theory to processes involving the Goldstone bosons.

- Unfortunately, dealing with baryons in ChPT is not so easy...
Introduction

- πN scattering is an important hadronic reaction that gives access to important questions related to strong interactions.

- At high energies:
 - Allows to study the baryonic spectrum of QCD together with their properties.

- At low energies:
 - Test the chiral dynamics of QCD.
 - Study the role of isospin violation.
 - Provides important information about the internal structure of the nucleon.

- At low energies, the spontaneously and explicitly broken chiral symmetry allow us to construct a perturbative theory for hadronic interactions \Rightarrow ChPT.

- ChPT is an EFT that allow us to apply perturbation theory to processes involving the Goldstone bosons.

- Unfortunately, dealing with baryons in ChPT is not so easy...
Introduction

- πN scattering is an important hadronic reaction that gives access to important questions related to strong interactions.

- At high energies:
 - Allows to study the baryonic spectrum of QCD together with their properties.

- At low energies:
 - Test the chiral dynamics of QCD.
 - Study the role of isospin violation.
 - Provides important information about the internal structure of the nucleon.

- At low energies, the spontaneously and explicitly broken chiral symmetry allow us to construct a perturbative theory for hadronic interactions \Rightarrow ChPT.

- ChPT is an EFT that allows us to apply perturbation theory to processes involving the Goldstone bosons.

- Unfortunately, dealing with baryons in ChPT is not so easy...
Introduction

- πN scattering is an important hadronic reaction that gives access to important questions related to strong interactions.

- At high energies:
 - Allows to study the baryonic spectrum of QCD together with their properties.

- At low energies:
 - Test the chiral dynamics of QCD.
 - Study the role of isospin violation.
 - Provides important information about the internal structure of the nucleon.

- At low energies, the spontaneously and explicitly broken chiral symmetry allow us to construct a perturbative theory for hadronic interactions \Rightarrow ChPT.

- ChPT is an EFT that allows us to apply perturbation theory to processes involving the Goldstone bosons.

- Unfortunately, dealing with baryons in ChPT is not so easy...
Introduction

- πN scattering is an important hadronic reaction that gives access to important questions related to strong interactions.

- At high energies:
 - Allows to study the baryonic spectrum of QCD together with their properties.

- At low energies:
 - Test the chiral dynamics of QCD.
 - Study the role of isospin violation.
 - Provides important information about the internal structure of the nucleon.

- At low energies, the spontaneously and explicitly broken chiral symmetry allow us to construct a perturbative theory for hadronic interactions \Rightarrow ChPT.

- ChPT is an EFT that allows us to apply perturbation theory to processes involving the Goldstone bosons.

- Unfortunately, dealing with baryons in ChPT is not so easy...
Introduction

- πN scattering is an important hadronic reaction that gives access to important questions related to strong interactions.

- **At high energies:**
 - Allows to study the baryonic spectrum of QCD together with their properties.

- **At low energies:**
 - Test the chiral dynamics of QCD.
 - Study the role of isospin violation.
 - Provides important information about the internal structure of the nucleon.

- At low energies, the spontaneously and explicitly broken chiral symmetry allow us to construct a perturbative theory for hadronic interactions \Rightarrow ChPT.

- ChPT is an EFT that allows us to apply perturbation theory to processes involving the Goldstone bosons.

- Unfortunately, dealing with baryons in ChPT is not so easy...

Introduction

- πN scattering is an important hadronic reaction that gives access to important questions related to strong interactions.

- **At high energies:**
 - Allows to study the baryonic spectrum of QCD together with their properties.

- **At low energies:**
 - Test the chiral dynamics of QCD.
 - Study the role of isospin violation.
 - Provides important information about the internal structure of the nucleon.

- At low energies, the spontaneously and explicitly broken chiral symmetry allow us to construct a perturbative theory for hadronic interactions \Rightarrow ChPT.

- ChPT is an EFT that allows us to apply perturbation theory to processes involving the Goldstone bosons.

Unfortunately, dealing with baryons in ChPT is not so easy...
Introduction

- πN scattering is an important hadronic reaction that gives access to important questions related to strong interactions.
- At high energies:
 - Allows to study the baryonic spectrum of QCD together with their properties.
- At low energies:
 - Test the chiral dynamics of QCD.
 - Study the role of isospin violation.
 - Provides important information about the internal structure of the nucleon.
- At low energies, the spontaneously and explicitly broken chiral symmetry allow us to construct a perturbative theory for hadronic interactions \Rightarrow ChPT.
- ChPT is an EFT that allows us to apply perturbation theory to processes involving the Goldstone bosons.
- Unfortunately, dealing with baryons in ChPT is not so easy...
The power counting problem in covariant BChPT.

According to the power counting:

\[\nu = \sum_i V_i (d_i + 2m_i - 2 + \frac{n_i}{2}) + 2L - \frac{E_N}{2} + 2 = 3 \]

However an explicit calculation (\(\mu = m_N \)) shows:

\[\delta m_N^{(3)} = \frac{3g_A^2 m_N M^2}{32\pi^2 f^2} + \mathcal{O}(M^3) \]

⇒ Violation of the power counting ⇒ Impossible to apply perturbation theory!
The power counting problem in covariant BChPT.

According to the power counting:

\[\nu = \sum_i V_i (d_i + 2m_i - 2 + \frac{n_i}{2}) + 2L - \frac{E_N}{2} + 2 = 3 \]

However an explicit calculation (\(\mu = m_N \)) shows:

\[\delta m_N^{(3)} = \frac{3g_A^2 m_N M_{\pi}^2}{32\pi^2 f_{\pi}^2} + O(M_{\pi}^3) \]

\(\Rightarrow \) Violation of the power counting \(\Rightarrow \) Impossible to apply perturbation theory!
Introduction

The power counting problem in covariant BChPT.

According to the power counting:

$$\nu = \sum_i V_i (d_i + 2m_i - 2 + \frac{n_i}{2}) + 2L - \frac{E_N}{2} + 2 = 3$$

However an explicit calculation ($\mu = m_N$) shows:

$$\delta m_N^{(3)} = \frac{3g_A^2 m_N M_{\pi}^2}{32 \pi^2 f_{\pi}^2} + O(M_{\pi}^3)$$

⇒ Violation of the power counting ⇒ Impossible to apply perturbation theory!
Introduction

Possible solutions:

- **Heavy Baryon ChPT (HBChPT)**

 [Jenkins and Manohar, PLB 255 (1991) 558] :

 - Integrates out the heavy degrees of freedom of the nucleon
 - Describes well the physical region.

 [Fettes, Meißner and Steininger, NPA 640 (1998) 199]

 - Does not converge in the subthreshold region

 [T. Becher and H. Leutwyler, JHEP (2001)] ⇒ We cannot check some Chiral symmetry predictions for QCD.

- **Infrared Regularization (IR)** [Becher and Leutwyler, EPJC 9 (1999) 643]:

 - Recovers the standard power counting keeping manifest Lorentz invariance.

 - The one-loop representation is not precise enough to allow a sufficiently accurate extrapolation of the physical data to the Cheng-Dashen point [T. Becher and H. Leutwyler, JHEP (2001)].
Introduction

Possible solutions:

- **Heavy Baryon ChPT (HBChPT)**
 - [Jenkins and Manohar, PLB 255 (1991) 558]:
 - Integrates out the heavy degrees of freedom of the nucleon
 - Describes well the physical region.
 - Does not converge in the subthreshold region
 - [Fettes, Meißner and Steininger, NPA 640 (1998) 199]

- **Infrared Regularization (IR)** [Becher and Leutwyler, EPJC 9 (1999) 643]:
 - Recovers the standard power counting keeping manifest Lorentz invariance.
 - The one-loop representation is not precise enough to allow a sufficiently accurate extrapolation of the physical data to the Cheng-Dashen point [T. Becher and H. Leutwyler, JHEP (2001)].
Introduction

Possible solutions:

- **Heavy Baryon ChPT** (HBChPT)
 [Jenkins and Manohar, PLB 255 (1991) 558] :
 - Integrates out the heavy degrees of freedom of the nucleon
 - Describes well the physical region.
 - Does not converge in the subthreshold region
 [Fettes, Meißner and Steininger, NPA 640 (1998) 199]
 [T. Becher and H. Leutwyler, JHEP (2001)] ⇒ We cannot check some Chiral symmetry predictions for QCD.

- **Infrared Regularization** (IR) [Becher and Leutwyler, EPJC 9 (1999) 643]:
 - Recovers the standard power counting keeping manifest Lorentz invariance.
 - The one-loop representation is not precise enough to allow a sufficiently accurate extrapolation of the physical data to the Cheng-Dashen point [T. Becher and H. Leutwyler, JHEP (2001)].
Introduction

Possible solutions:

- **Heavy Baryon ChPT (HBChPT)**

 [Jenkins and Manohar, PLB 255 (1991) 558]:

 - Integrates out the heavy degrees of freedom of the nucleon
 - Describes well the physical region.

 [Fettes, Meißner and Steininger, NPA 640 (1998) 199]

 - Does not converge in the subthreshold region

 [T. Becher and H. Leutwyler, JHEP (2001)] ⇒ We cannot check some Chiral symmetry predictions for QCD.

- **Infrared Regularization (IR)** [Becher and Leutwyler, EPJC 9 (1999) 643]:

 - Recovers the standard power counting keeping manifest Lorentz invariance.
 - The one-loop representation is not precise enough to allow a sufficiently accurate extrapolation of the physical data to the Cheng-Dashen point [T. Becher and H. Leutwyler, JHEP (2001)].
Possible solutions:

- **Heavy Baryon ChPT (HBChPT)**
 - [Jenkins and Manohar, PLB 255 (1991) 558]:
 - Integrates out the heavy degrees of freedom of the nucleon
 - Describes well the physical region.
 - [Fettes, Meißner and Steininger, NPA 640 (1998) 199]
 - Does not converge in the subthreshold region
 - [T. Becher and H. Leutwyler, JHEP (2001)] ⇒ We cannot check some Chiral symmetry predictions for QCD.

 - Recovers the standard power counting keeping manifest Lorentz invariance.
 - The one-loop representation is not precise enough to allow a sufficiently accurate extrapolation of the physical data to the Cheng-Dashen point [T. Becher and H. Leutwyler, JHEP (2001)].
Introduction

Possible solutions:

- **Heavy Baryon ChPT (HBChPT)**

 [Jenkins and Manohar, PLB 255 (1991) 558]:

 - Integrates out the heavy degrees of freedom of the nucleon
 - Describes well the physical region.

 [Fettes, Meißner and Steininger, NPA 640 (1998) 199]

 - Does not converge in the subthreshold region

 [T. Becher and H. Leutwyler, JHEP (2001)] \(\Rightarrow\) We cannot check some Chiral symmetry predictions for QCD.

- **Infrared Regularization (IR)** [Becher and Leutwyler, EPJC 9 (1999) 643]:

 - Recovers the standard power counting keeping manifest Lorentz invariance.

 - The one-loop representation is not precise enough to allow a sufficiently accurate extrapolation of the physical data to the Cheng-Dashen point [T. Becher and H. Leutwyler, JHEP (2001)].
Possible solutions:

- **Heavy Baryon ChPT (HBChPT)**
 - [Jenkins and Manohar, PLB 255 (1991) 558]:
 - Integrates out the heavy degrees of freedom of the nucleon
 - Describes well the physical region.
 - [Fettes, Meißner and Steininger, NPA 640 (1998) 199]
 - Does not converge in the subthreshold region
 - [T. Becher and H. Leutwyler, JHEP (2001)] \(\Rightarrow \) We cannot check some Chiral symmetry predictions for QCD.

- **Infrared Regularization (IR)** [Becher and Leutwyler, EPJC 9 (1999) 643]:
 - Recovers the standard power counting keeping manifest Lorentz invariance.
 - The one-loop representation is not precise enough to allow a sufficiently accurate extrapolation of the physical data to the Cheng-Dashen point [T. Becher and H. Leutwyler, JHEP (2001)].
Introduction

Possible solutions:

- **Heavy Baryon ChPT (HBChPT)**
 - [Jenkins and Manohar, PLB 255 (1991) 558]:
 - Integrates out the heavy degrees of freedom of the nucleon
 - Describes well the physical region.
 - [Fettes, Meißner and Steininger, NPA 640 (1998) 199]:
 - Does not converge in the subthreshold region

- **Infrared Regularization (IR)** [Becher and Leutwyler, EPJC 9 (1999) 643]:
 - Recovers the standard power counting keeping manifest Lorentz invariance.
 - The one-loop representation is not precise enough to allow a sufficiently accurate extrapolation of the physical data to the Cheng-Dashen point [T. Becher and H. Leutwyler, JHEP (2001)].
Introduction

- **Infrared Regularization (continuation):**
 - The IR description of the phase shifts are of the same quality as those of HBChPT. [JMA, JMC, JAO and LAR, PRC 83 (2011)]
 - Alters the analytical properties of the amplitude ⇒ Unphysical cuts.

It would be desirable to have a formulation consistent with the power counting of ChPT that preserves the good analytical properties of a covariant calculation.

⇒ **Extended-On-Mass-Shell (EOMS):**

- The terms that break the power counting (PCBT) are analytical in the quark masses and momenta ⇒ They can be canceled via a redefinition of the LECs. ⇒ We recover the power counting.
- One subtract a finite polynomial (PCBT) to the covariant amplitude ⇒ We do not alter their analytical properties.
Introduction

- **Infrared Regularization** (continuation):
 - The IR description of the phase shifts are of the same quality as those of HBChPT. [JMA, JMC, JAO and LAR, PRC 83 (2011)]
 - Alters the analytical properties of the amplitude \Rightarrow Unphysical cuts.

It would be desirable to have a formulation consistent with the power counting of ChPT that preserves the good analytical properties of a covariant calculation.

\Rightarrow **Extended-On-Mass-Shell (EOMS):**

- The terms that break the power counting (PCBT) are analytical in the quark masses and momenta \Rightarrow They can be canceled via a redefinition of the LECs. \Rightarrow We recover the power counting.
- One subtract a finite polynomial (PCBT) to the covariant amplitude \Rightarrow We do not alter their analytical properties.
Infrared Regularization (continuation):

- The IR description of the phase shifts are of the same quality as those of HBChPT. [JMA, JMC, JAO and LAR, PRC 83 (2011)]
- Alters the analytical properties of the amplitude ⇒ Unphysical cuts.

It would be desirable to have a formulation consistent with the power counting of ChPT that preserves the good analytical properties of a covariant calculation.

⇒ Extended-On-Mass-Shell (EOMS):

- The terms that break the power counting (PCBT) are analytical in the quark masses and momenta ⇒ They can be canceled via a redefinition of the LECs. ⇒ We recover the power counting.
- One subtract a finite polynomial (PCBT) to the covariant amplitude ⇒ We do not alter their analytical properties.
Introduction

- **Infrared Regularization** (continuation):
 - The IR description of the phase shifts are of the same quality as those of HBChPT. [JMA, JMC, JAO and LAR, PRC 83 (2011)]
 - Alters the analytical properties of the amplitude \Rightarrow Unphysical cuts.

It would be desirable to have a formulation consistent with the power counting of ChPT that preserves the good analytical properties of a covariant calculation.

\Rightarrow **Extended-On-Mass-Shell (EOMS):**

- The terms that break the power counting (PCBT) are analytical in the quark masses and momenta \Rightarrow They can be canceled via a redefinition of the LECs. \Rightarrow We recover the power counting.
- One subtract a finite polynomial (PCBT) to the covariant amplitude \Rightarrow We do not alter their analytical properties.
Introduction

- **Infrared Regularization** (continuation):
 - The IR description of the phase shifts are of the same quality as those of HBChPT. [JMA, JMC, JAO and LAR, PRC 83 (2011)]
 - Alters the analytical properties of the amplitude ⇒ Unphysical cuts.

It would be desirable to have a formulation consistent with the power counting of ChPT that preserves the good analytical properties of a covariant calculation.

⇒ **Extended-On-Mass-Shell** (EOMS):

- The terms that break the power counting (PCBT) are analytical in the quark masses and momenta ⇒ They can be canceled via a redefinition of the LECs. ⇒ We recover the power counting.
- One subtract a finite polynomial (PCBT) to the covariant amplitude ⇒ We do not alter their analytical properties.
Infrared Regularization (continuation):

- The IR description of the phase shifts are of the same quality as those of HBChPT. [JMA, JMC, JAO and LAR, PRC 83 (2011)]
- Alters the analytical properties of the amplitude \Rightarrow Unphysical cuts.

It would be desirable to have a formulation consistent with the power counting of ChPT that preserves the good analytical properties of a covariant calculation.

\Rightarrow *Extended-On-Mass-Shell* (EOMS):

- The terms that break the power counting (PCBT) are analytical in the quark masses and momenta \Rightarrow They can be canceled via a redefinition of the LECs. \Rightarrow We recover the power counting.
- One subtract a finite polynomial (PCBT) to the covariant amplitude \Rightarrow We do not alter their analytical properties.
Introduction

- **Infrared Regularization** (continuation):
 - The IR description of the phase shifts are of the same quality as those of HBChPT. [JMA, JMC, JAO and LAR, PRC 83 (2011)]
 - Alters the analytical properties of the amplitude ⇒ Unphysical cuts.

It would be desirable to have a formulation consistent with the power counting of ChPT that preserves the good analytical properties of a covariant calculation.

⇒ **Extended-On-Mass-Shell** (EOMS):

- The terms that break the power counting (PCBT) are analytical in the quark masses and momenta ⇒ They can be canceled via a redefinition of the LECs. ⇒ We recover the power counting.
- One subtract a finite polynomial (PCBT) to the covariant amplitude ⇒ We do not alter their analytical properties.
The role of the $\Delta(1232)$ in πN scattering

- The $\Delta(1232)$ is a resonance with quantum numbers $J = 3/2$ and $I = 3/2$ that dominates the πN scattering at low energies.
- Most of the ChPT analyses of πN scattering do not include it as an explicit degree of freedom arguing that its contribution can be absorbed in the LECs of the πN Lagrangian (RS).
- However, the proximity of the Δ pole to the πN threshold makes that the behavior of this resonance cannot be well reproduced by a finite polynomial \Rightarrow Worsening of the convergence of the chiral series.
- This resonance can be included *consistently* in our EFT using the consistent formulation of chiral Lagrangians of Pascalutsa [Pascalutsa and Timmermans, PRC 60, (1999), Pascalutsa, PLB 503, (2001)].
The role of the $\Delta(1232)$ in πN scattering

- The $\Delta(1232)$ is a resonance with quantum numbers $J = \frac{3}{2}$ and $I = \frac{3}{2}$ that dominates the πN scattering at low energies.

- Most of the ChPT analyses of πN scattering do not include it as an explicit degree of freedom arguing that its contribution can be absorbed in the LECs of the πN Lagrangian (RS).

- However, the proximity of the Δ pole to the πN threshold makes that the behavior of this resonance cannot be well reproduced by a finite polynomial \Rightarrow Worsening of the convergence of the chiral series.

- This resonance can be included *consistently* in our EFT using the consistent formulation of chiral Lagrangians of Pascalutsa [Pascalutsa and Timmermans, PRC 60, (1999), Pascalutsa, PLB 503, (2001)].
The role of the $\Delta(1232)$ in πN scattering

- The $\Delta(1232)$ is a resonance with quantum numbers $J = 3/2$ and $I = 3/2$ that dominates the πN scattering at low energies.
- Most of the ChPT analyses of πN scattering do not include it as an explicit degree of freedom arguing that its contribution can be absorbed in the LECs of the πN Lagrangian (RS).
- However, the proximity of the Δ pole to the πN threshold makes that the behavior of this resonance cannot be well reproduced by a finite polynomial \Rightarrow Worsening of the convergence of the chiral series.
- This resonance can be included consistently in our EFT using the consistent formulation of chiral Lagrangians of Pascalutsa [Pascalutsa and Timmermans, PRC 60, (1999), Pascalutsa, PLB 503, (2001)].
The role of the $\Delta(1232)$ in πN scattering

- The $\Delta(1232)$ is a resonance with quantum numbers $J = 3/2$ and $I = 3/2$ that dominates the πN scattering at low energies.

- Most of the ChPT analyses of πN scattering do not include it as an explicit degree of freedom arguing that its contribution can be absorbed in the LECs of the πN Lagrangian (RS).

- However, the proximity of the Δ pole to the πN threshold makes that the behavior of this resonance cannot be well reproduced by a finite polynomial \Rightarrow Worsening of the convergence of the chiral series.

- This resonance can be included \textit{consistently} in our EFT using the consistent formulation of chiral Lagrangians of Pascalutsa [Pascalutsa and Timmermans, PRC 60, (1999), Pascalutsa, PLB 503, (2001)].
Part II

πN scattering
We calculate the πN scattering amplitude in covariant BChPT up to $O(p^3)$ exploring two possibilities:

- Δ-ChPT: π and N are the only degrees of freedom \Rightarrow Allows to compare with previous HBChPT and IR results.
- Δ-ChPT: We include the $\Delta(1232)$ as an explicit degree of freedom using consistent Lagrangians \Rightarrow We expect an improvement of the convergence of the chiral series.
 - \Rightarrow Can solve various open problems of BChPT when studying the πN scattering (convergence in the subthreshold region, $\sigma_{\pi N}$).

To fix the LECs of the chiral Lagrangians, we compare our theoretical amplitude to three different PWAs:

- The low energy PWA of Matsinos’ group (EM06) [Matsinos, Woolcock, Oades, Rasche, Gashi. NPA 778 (2006) 95-123].
We calculate the πN scattering amplitude in covariant BChPT up to $O(p^3)$ exploring two possibilities:

- Δ-ChPT: π and N are the only degrees of freedom \Rightarrow Allows to compare with previous HBChPT and IR results.
- Δ-ChPT: We include the $\Delta(1232)$ as an explicit degree of freedom using consistent Lagrangians \Rightarrow We expect an improvement of the convergence of the chiral series.
 \Rightarrow Can solve various open problems of BChPT when studying the πN scattering (convergence in the subthreshold region, $\sigma_{\pi N}$).

To fix the LECs of the chiral Lagrangians, we compare our theoretical amplitude to three different PWAs:

- The low energy PWA of Matsinos’ group (EM06) [Matsinos, Woolcock, Oades, Rasche, Gashi. NPA 778 (2006) 95-123].
πN scattering

We calculate the πN scattering amplitude in covariant BChPT up to \(\mathcal{O}(p^3) \) exploring two possibilities:

- ✤ ∆-ChPT: π and N are the only degrees of freedom ⇒ Allows to compare with previous HBChPT and IR results.

- ✤ Δ-ChPT: We include the Δ(1232) as an explicit degree of freedom using consistent Lagrangians ⇒ We expect an improvement of the convergence of the chiral series.
 ✤ ⇒ Can solve various open problems of BChPT when studying the πN scattering (convergence in the subthreshold region, \(\sigma_{\pi N} \)).

To fix the LECs of the chiral Lagrangians, we compare our theoretical amplitude to three different PWAs:

- ✤ The low energy PWA of Matsinos’ group (EM06) [Matsinos, Woolcock, Oades, Rasche, Gashi. NPA 778 (2006) 95-123].
We calculate the πN scattering amplitude in covariant BChPT up to $\mathcal{O}(p^3)$ exploring two possibilities:

- Δ-ChPT: π and N are the only degrees of freedom \Rightarrow Allows to compare with previous HBChPT and IR results.
- Δ-ChPT: We include the $\Delta(1232)$ as an explicit degree of freedom using consistent Lagrangians \Rightarrow We expect an improvement of the convergence of the chiral series.
 - \Rightarrow Can solve various open problems of BChPT when studying the πN scattering (convergence in the subthreshold region, $\sigma_{\pi N}$).

To fix the LECs of the chiral Lagrangians, we compare our theoretical amplitude to three different PWAs:

- The low energy PWA of Matsinos’ group (EM06) [Matsinos, Woolcock, Oades, Rasche, Gashi. NPA 778 (2006) 95-123].
We calculate the πN scattering amplitude in covariant BChPT up to $\mathcal{O}(p^3)$ exploring two possibilities:

- Δ-ChPT: π and N are the only degrees of freedom \Rightarrow Allows to compare with previous HBChPT and IR results.
- Δ-ChPT: We include the $\Delta(1232)$ as an explicit degree of freedom using consistent Lagrangians \Rightarrow We expect an improvement of the convergence of the chiral series.
 - \Rightarrow Can solve various open problems of BChPT when studying the πN scattering (convergence in the subthreshold region, $\sigma_{\pi N}$).

To fix the LECs of the chiral Lagrangians, we compare our theoretical amplitude to three different PWAs:

- The low energy PWA of Matsinos’ group (EM06) [Matsinos, Woolcock, Oades, Rasche, Gashi. NPA 778 (2006) 95-123].
We calculate the πN scattering amplitude in covariant BChPT up to $O(p^3)$ exploring two possibilities:

- Δ-ChPT: π and N are the only degrees of freedom \Rightarrow Allows to compare with previous HBChPT and IR results.
- Δ-ChPT: We include the $\Delta(1232)$ as an explicit degree of freedom using consistent Lagrangians \Rightarrow We expect an improvement of the convergence of the chiral series.
 - \Rightarrow Can solve various open problems of BChPT when studying the πN scattering (convergence in the subthreshold region, $\sigma_{\pi N}$).

To fix the LECs of the chiral Lagrangians, we compare our theoretical amplitude to three different PWAs:

- The low energy PWA of Matsinos’ group (EM06) [Matsinos, Woolcock, Oades, Rasche, Gashi. NPA 778 (2006) 95-123].
πN scattering

We calculate the πN scattering amplitude in covariant BChPT up to \(\mathcal{O}(p^3) \) exploring two possibilities:

- ∆-ChPT: π and N are the only degrees of freedom ⇒ Allows to compare with previous HBChPT and IR results.
- Δ-ChPT: We include the Δ(1232) as an explicit degree of freedom using consistent Lagrangians ⇒ We expect an improvement of the convergence of the chiral series.
 ⇒ Can solve various open problems of BChPT when studying the πN scattering (convergence in the subthreshold region, \(\sigma_{\pi N} \)).

To fix the LECs of the chiral Lagrangians, we compare our theoretical amplitude to three different PWAs:

- The low energy PWA of Matsinos’ group (EM06) [Matsinos, Woolcock, Oades, Rasche, Gashi. NPA 778 (2006) 95-123].
We calculate the πN scattering amplitude in covariant BChPT up to $\mathcal{O}(p^3)$ exploring two possibilities:

- Δ-ChPT: π and N are the only degrees of freedom \Rightarrow Allows to compare with previous HBChPT and IR results.
- Δ-ChPT: We include the $\Delta(1232)$ as an explicit degree of freedom using consistent Lagrangians \Rightarrow We expect an improvement of the convergence of the chiral series.
 - \Rightarrow Can solve various open problems of BChPT when studying the πN scattering (convergence in the subthreshold region, $\sigma_{\pi N}$).

To fix the LECs of the chiral Lagrangians, we compare our theoretical amplitude to three different PWAs:

- The low energy PWA of Matsinos’ group (EM06) [Matsinos, Woolcock, Oades, Rasche, Gashi. NPA 778 (2006) 95-123].
Fits

\[\sqrt{s} \text{ (GeV)} \]

Red line: Δ-ChPT. **Green line:** Δ-ChPT.
Δ-ChPT Fits

<table>
<thead>
<tr>
<th>LEC</th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
<th>KA85 Δ-ChPT</th>
<th>WI08 Δ-ChPT</th>
<th>EM06 Δ-ChPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>-0.80(6)</td>
<td>-1.004(30)</td>
<td>-1.000(8)</td>
<td>-1.26(14)</td>
<td>-1.50(7)</td>
<td>-1.47(2)</td>
</tr>
<tr>
<td>c_2</td>
<td>1.12(13)</td>
<td>1.010(40)</td>
<td>0.575(25)</td>
<td>4.08(19)</td>
<td>3.74(26)</td>
<td>3.63(2)</td>
</tr>
<tr>
<td>c_3</td>
<td>-2.96(15)</td>
<td>-3.040(20)</td>
<td>-2.515(35)</td>
<td>-6.74(38)</td>
<td>-6.63(31)</td>
<td>-6.42(1)</td>
</tr>
<tr>
<td>c_4</td>
<td>2.00(7)</td>
<td>2.029(10)</td>
<td>1.776(20)</td>
<td>3.74(16)</td>
<td>3.68(14)</td>
<td>3.56(1)</td>
</tr>
<tr>
<td>$d_1 + d_2$</td>
<td>-0.15(21)</td>
<td>0.15(20)</td>
<td>-0.34(5)</td>
<td>3.3(7)</td>
<td>3.7(6)</td>
<td>3.64(8)</td>
</tr>
<tr>
<td>d_3</td>
<td>-0.21(26)</td>
<td>-0.23(27)</td>
<td>0.276(43)</td>
<td>-2.7(6)</td>
<td>-2.6(6)</td>
<td>-2.21(8)</td>
</tr>
<tr>
<td>d_5</td>
<td>0.82(14)</td>
<td>0.47(7)</td>
<td>0.2028(33)</td>
<td>0.50(35)</td>
<td>-0.07(16)</td>
<td>-0.56(4)</td>
</tr>
<tr>
<td>$d_{14} - d_{15}$</td>
<td>-0.11(44)</td>
<td>-0.5(5)</td>
<td>0.35(9)</td>
<td>-6.1(1.2)</td>
<td>-6.8(1.1)</td>
<td>-6.49(2)</td>
</tr>
<tr>
<td>d_{18}</td>
<td>-1.53(27)</td>
<td>-0.2(8)</td>
<td>-0.53(12)</td>
<td>-3.0(1.6)</td>
<td>-0.50(1.8)</td>
<td>-1.07(22)</td>
</tr>
</tbody>
</table>

| h_A | 3.02(4) | 2.87(4) | 2.99(2) | – | – | – |
| $\chi^2_{d.o.f.}$ | 0.77 | 0.24 | 0.11 | 0.38 | 0.23 | 25.08 |

- $\Delta(1232)$ Breit-Wigner width $\Gamma_\Delta = 118(2)$ MeV (PDG) \Rightarrow $h_A = 2.90(2)$
Part III

Subthreshold Region
Subthreshold Region

- The subthreshold contains points that are connected to important low energies theorems.
- For example, the value of \bar{D}^+ at the Cheng-Dashen point $(s = m_N^2, t = 2M_\pi^2)$ is directly related to the pion-nucleon sigma term.
- Up to now, ChPT analyses could not reproduce, from physical data, the subthreshold quantities extracted by the PWAs.
- To study the EOMS convergence, we calculate (among others) d_{00}^+, d_{01}^+ and Σ, which are defined by:

$$\bar{D}^+(\nu, t) = d_{00}^+ + d_{01}^+ t + d_{10}^+ \nu^2 + \ldots \quad (\nu \equiv \frac{s - u}{4m_N})$$

$$\Sigma = f_\pi^2 \bar{D}^+(s = m_N^2, t = 2M_\pi^2)$$

- PWAs obtain d_{00}^+, d_{01}^+ and Σ by means of dispersion relations.
Subthreshold Region

- The subthreshold contains points that are connected to important low energies theorems.
- For example, the value of \bar{D}^+ at the Cheng-Dashen point $(s = m_N^2, t = 2M_\pi^2)$ is directly related to the pion-nucleon sigma term.
- Up to now, ChPT analyses could not reproduce, from physical data, the subthreshold quantities extracted by the PWAs.
- To study the EOMS convergence, we calculate (among others) d^+_{00}, d^+_{01} and Σ, which are defined by:

$$\bar{D}^+(\nu, t) = d^+_{00} + d^+_{01} t + d^+_{10} \nu^2 + \ldots \quad (\nu \equiv \frac{s - u}{4m_N})$$

$$\Sigma = f^2_\pi \bar{D}^+(s = m_N^2, t = 2M_\pi^2)$$

- PWAs obtain d^+_{00}, d^+_{01} and Σ by means of dispersion relations.
The subthreshold contains points that are connected to important low energies theorems.

For example, the value of \bar{D}^+ at the Cheng-Dashen point ($s = m_N^2, t = 2M_{\pi}^2$) is directly related to the pion-nucleon sigma term.

Up to now, ChPT analyses could not reproduce, from physical data, the subthreshold quantities extracted by the PWAs.

To study the EOMS convergence, we calculate (among others) d_{00}^+, d_{01}^+ and Σ, which are defined by:

$$\bar{D}^+(\nu, t) = d_{00}^+ + d_{01}^+ t + d_{10}^+ \nu^2 + \ldots \quad (\nu \equiv \frac{s - u}{4m_N})$$

$$\Sigma = f_{\pi}^2 \bar{D}^+(s = m_N^2, t = 2M_{\pi}^2)$$

PWAs obtain d_{00}^+, d_{01}^+ and Σ by means of dispersion relations.
The subthreshold contains points that are connected to important low energies theorems.

For example, the value of \bar{D}^+ at the Cheng-Dashen point $(s = m_N^2, t = 2M_\pi^2)$ is directly related to the pion-nucleon sigma term.

Up to now, ChPT analyses could not reproduce, from physical data, the subthreshold quantities extracted by the PWAs.

To study the EOMS convergence, we calculate (among others) d_{00}^+, d_{01}^+ and Σ, which are defined by:

$$\bar{D}^+(\nu, t) = d_{00}^+ + d_{01}^+ t + d_{10}^+ \nu^2 + \ldots \quad (\nu \equiv \frac{s - u}{4m_N})$$

$$\Sigma = f_\pi^2 \bar{D}^+(s = m_N^2, t = 2M_\pi^2)$$

PWAs obtain d_{00}^+, d_{01}^+ and Σ by means of dispersion relations.
The subthreshold contains points that are connected to important low energies theorems.

For example, the value of \bar{D}^+ at the Cheng-Dashen point $(s = m_N^2, t = 2M_\pi^2)$ is directly related to the pion-nucleon sigma term.

Up to now, ChPT analyses could not reproduce, from physical data, the subthreshold quantities extracted by the PWAs.

To study the EOMS convergence, we calculate (among others) d_{00}^+, d_{01}^+ and Σ, which are defined by:

$$\bar{D}^+(\nu, t) = d_{00}^+ + d_{01}^+ t + d_{10}^+ \nu^2 + \ldots \quad (\nu \equiv \frac{s - u}{4m_N})$$

$$\Sigma = f_\pi^2 \bar{D}^+(s = m_N^2, t = 2M_\pi^2)$$

PWAs obtain d_{00}^+, d_{01}^+ and Σ by means of dispersion relations.
Subthreshold Region

- The amplitude fitted in the physical region can be extrapolated into the subthreshold one and compare with PWAs [1].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^+0 \left(M{\pi}^{-1} \right)$</td>
<td>$-2.02(42)$</td>
<td>$-1.65(28)$</td>
<td>$-1.56(5)$</td>
<td>$-1.48(15)$</td>
<td>$-1.20(13)$</td>
<td>$-0.97(2)$</td>
<td>-1.46</td>
<td>-1.30</td>
</tr>
<tr>
<td>$d^+1 \left(M{\pi}^{-3} \right)$</td>
<td>$1.73(19)$</td>
<td>$1.70(18)$</td>
<td>$1.64(4)$</td>
<td>$1.21(10)$</td>
<td>$1.20(9)$</td>
<td>$1.08(2)$</td>
<td>1.14</td>
<td>1.19</td>
</tr>
<tr>
<td>Σ (MeV)</td>
<td>$84(10)^*$</td>
<td>$103(5)^*$</td>
<td>$103(2)^*$</td>
<td>$45(7)^*$</td>
<td>$64(6)^*$</td>
<td>$64(1)^*$</td>
<td>$64(8)$</td>
<td>$79(7)$</td>
</tr>
</tbody>
</table>

- Good agreement between EOMS-BChPT+$\Delta(1232)$ and PWAs!

- $\Delta(1232)$ is a key ingredient for the convergence in both, the physical as well as the subthreshold region.

- EOMS-BChPT+$\Delta(1232)$ can connect both physical and the subthreshold regions.
Subthreshold Region

- The amplitude fitted in the *physical* region can be extrapolated into the subthreshold one and compare with PWAs [1].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{00}^+ (M_{π}^{-1})</td>
<td>$-2.02(42)$</td>
<td>$-1.65(28)$</td>
<td>$-1.56(5)$</td>
<td>$-1.48(15)$</td>
<td>$-1.20(13)$</td>
<td>$-0.97(2)$</td>
<td>-1.46</td>
<td>-1.30</td>
</tr>
<tr>
<td></td>
<td>$1.73(19)$</td>
<td>$1.70(18)$</td>
<td>$1.64(4)$</td>
<td>$1.21(10)$</td>
<td>$1.20(9)$</td>
<td>$1.08(2)$</td>
<td>1.14</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>$84(10)^*$</td>
<td>$103(5)^*$</td>
<td>$103(2)^*$</td>
<td>$45(7)^*$</td>
<td>$64(6)^*$</td>
<td>$64(1)^*$</td>
<td>$64(8)$</td>
<td>$79(7)$</td>
</tr>
</tbody>
</table>

- Good agreement between EOMS-BChPT+Δ(1232) and PWAs!.
- Δ(1232) is a key ingredient for the convergence in both, the physical as well as the subthreshold region.
- EOMS-BChPT+Δ(1232) can connect both physical and the subthreshold regions.
Subthreshold Region

- The amplitude fitted in the physical region can be extrapolated into the subthreshold one and compare with PWAs [1].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{00}^{+} (M_{\pi}^{-1})$</td>
<td>$-2.02(42)$</td>
<td>$-1.65(28)$</td>
<td>$-1.56(5)$</td>
<td>$-1.48(15)$</td>
<td>$-1.20(13)$</td>
<td>$-0.97(2)$</td>
<td>-1.46</td>
<td>-1.30</td>
</tr>
<tr>
<td>$\sigma_{01}^{+} (M_{\pi}^{-3})$</td>
<td>$1.73(19)$</td>
<td>$1.70(18)$</td>
<td>$1.64(4)$</td>
<td>$1.21(10)$</td>
<td>$1.20(9)$</td>
<td>$1.08(2)$</td>
<td>1.14</td>
<td>1.19</td>
</tr>
<tr>
<td>Σ (MeV)</td>
<td>$84(10)^*$</td>
<td>$103(5)^*$</td>
<td>$103(2)^*$</td>
<td>$45(7)^*$</td>
<td>$64(6)^*$</td>
<td>$64(1)^*$</td>
<td>$64(8)$</td>
<td>$79(7)$</td>
</tr>
</tbody>
</table>

- Good agreement between EOMS-BChPT+Δ(1232) and PWAs!.

- Δ(1232) is a key ingredient for the convergence in both, the physical as well as the subthreshold region.

- EOMS-BChPT+Δ(1232) can connect both physical and the subthreshold regions.
The amplitude fitted in the physical region can be extrapolated into the subthreshold one and compare with PWAs [1].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_{00}^+ \left(M_{\pi}^{-1} \right)$</td>
<td>$-2.02(42)$</td>
<td>$-1.65(28)$</td>
<td>$-1.56(5)$</td>
<td>$-1.48(15)$</td>
<td>$-1.20(13)$</td>
<td>$-0.97(2)$</td>
<td>-1.46</td>
<td>-1.30</td>
</tr>
<tr>
<td>$d_{01}^+ \left(M_{\pi}^{-3} \right)$</td>
<td>$1.73(19)$</td>
<td>$1.70(18)$</td>
<td>$1.64(4)$</td>
<td>$1.21(10)$</td>
<td>$1.20(9)$</td>
<td>$1.08(2)$</td>
<td>1.14</td>
<td>1.19</td>
</tr>
<tr>
<td>$\Sigma \text{ (MeV)}$</td>
<td>$84(10)^*$</td>
<td>$103(5)^*$</td>
<td>$103(2)^*$</td>
<td>$45(7)^*$</td>
<td>$64(6)^*$</td>
<td>$64(1)^*$</td>
<td>$64(8)$</td>
<td>$79(7)$</td>
</tr>
</tbody>
</table>

- Good agreement between EOMS-BChPT+$\Delta(1232)$ and PWAs!
- $\Delta(1232)$ is a key ingredient for the convergence in both, the physical as well as the subthreshold region.
- EOMS-BChPT+$\Delta(1232)$ can connect both physical and the subthreshold regions.
Subthreshold Region

- The amplitude fitted in the physical region can be extrapolated into the subthreshold one and compare with PWAs [1].

<table>
<thead>
<tr>
<th>d_{00}^+ (M_{π}^{-1})</th>
<th>d_{01}^+ (M_{π}^{-3})</th>
<th>Σ (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KA85 [1] Δ-ChPT</td>
<td>WI08 [1] Δ-ChPT</td>
<td>EM06 [1] Δ-ChPT</td>
</tr>
<tr>
<td>$-2.02(42)$</td>
<td>$1.73(19)$</td>
<td>$-1.56(5)$</td>
</tr>
<tr>
<td>$-1.65(28)$</td>
<td>$1.70(18)$</td>
<td>$1.64(4)$</td>
</tr>
<tr>
<td>$84(10)^*$</td>
<td>$103(5)^*$</td>
<td>$103(2)^*$</td>
</tr>
<tr>
<td>$-2.02(42)$</td>
<td>$1.73(19)$</td>
<td>$-1.56(5)$</td>
</tr>
<tr>
<td>$-1.65(28)$</td>
<td>$1.70(18)$</td>
<td>$1.64(4)$</td>
</tr>
<tr>
<td>$84(10)^*$</td>
<td>$103(5)^*$</td>
<td>$103(2)^*$</td>
</tr>
<tr>
<td>KA85 [1] Δ-ChPT</td>
<td>WI08 [1] Δ-ChPT</td>
<td>EM06 [1] Δ-ChPT</td>
</tr>
<tr>
<td>$-1.48(15)$</td>
<td>$1.20(13)$</td>
<td>$-0.97(2)$</td>
</tr>
<tr>
<td>$1.21(10)$</td>
<td>$1.20(9)$</td>
<td>$1.08(2)$</td>
</tr>
<tr>
<td>$45(7)^*$</td>
<td>$64(6)^*$</td>
<td>$64(1)^*$</td>
</tr>
<tr>
<td>KA85 [2] Δ-ChPT</td>
<td>WI08 [3] Δ-ChPT</td>
<td></td>
</tr>
<tr>
<td>-1.46</td>
<td>-1.30</td>
<td></td>
</tr>
<tr>
<td>1.14</td>
<td>$79(7)$</td>
<td></td>
</tr>
</tbody>
</table>

- Good agreement between EOMS-BChPT+$\Delta(1232)$ and PWAs!.
- $\Delta(1232)$ is a key ingredient for the convergence in both, the physical as well as the subthreshold region.
- EOMS-BChPT+$\Delta(1232)$ can connect both physical and the subthreshold regions.
Part IV

The pion-nucleon σ-term
The pion-nucleon σ-term

- $\sigma_{\pi N}$ is an observable of fundamental importance that embodies the internal scalar structure of the nucleon, related to:
 - Origin of the mass of ordinary matter.
 - Investigations of the QCD phase diagram and neutronic systems.
 - Used in estimations of DM-nucleon SI elastic scattering cross section.

- PWAs extrapolate $\Sigma = f_\pi^2 D^+$ to the Cheng-Dashen point and relate the Σ-term to $\sigma_{\pi N}$ through the relation:
 $$\Sigma = \sigma(2M_\pi^2) + \Delta_R = \sigma_{\pi N} + \Delta_\sigma + \Delta_R$$
 [Gasser, Leutwyler and Sainio, PLB 253, (1991)]

- Chiral symmetry allows to relate the $\sigma_{\pi N}$ to the LEC c_1.
- One can obtain this relation calculating $\sigma(t = 0)$ or by means of the Hellmann-Feynman Theorem:
 $$\sigma_{\pi N} = -4c_1 M_\pi^2 - \frac{3g_A^2 M_\pi^3}{16\pi^2 f_\pi^2 m_N} \left(\frac{3m_N^2 - M_\pi^2}{\sqrt{4m_N^2 - M_\pi^2}} \arccos \frac{M_\pi}{2m_N} + M_\pi \log \frac{M_\pi}{m_N} \right)$$
 [Alarcon, Martin Camalich and Oller, PRD(R) 85 (2012)]
The pion-nucleon σ-term

- $\sigma_{\pi N}$ is an observable of fundamental importance that embodies the internal scalar structure of the nucleon, related to:
 - Origin of the mass of ordinary matter.
 - Investigations of the QCD phase diagram and neutronic systems.
 - Used in estimations of DM-nucleon SI elastic scattering cross section.
- PWAs extrapolate $\Sigma = f_\pi^2 D^+$ to the Cheng-Dashen point and relate the Σ-term to $\sigma_{\pi N}$ through the relation:
 $$\Sigma = \sigma(2M_\pi^2) + \Delta_R = \sigma_{\pi N} + \Delta_\sigma + \Delta_R$$
 [Gasser, Leutwyler and Sainio, PLB 253, (1991)]
- Chiral symmetry allows to relate the $\sigma_{\pi N}$ to the LEC c_1.
- One can obtain this relation calculating $\sigma(t = 0)$ or by means of the Hellmann-Feynman Theorem:
 $$\sigma_{\pi N} = -4c_1M_\pi^2 - \frac{3g_A^2M_\pi^3}{16\pi^2f_\pi^2m_N} \left(\frac{3m_N^2 - M_\pi^2}{\sqrt{4m_N^2 - M_\pi^2}} \arccos \frac{M_\pi}{2m_N} + M_\pi \log \frac{M_\pi}{m_N} \right)$$
 [Alarcon, Martin Camalich and Oller, PRD(R) 85 (2012)]
The pion-nucleon σ-term

- $\sigma_{\pi N}$ is an observable of fundamental importance that embodies the internal scalar structure of the nucleon, related to:
 - Origin of the mass of ordinary matter.
 - Investigations of the QCD phase diagram and neutronic systems.
 - Used in estimations of DM-nucleon SI elastic scattering cross section.

- PWAs extrapolate $\Sigma = f_\pi^2 \bar{D}^+$ to the Cheng-Dashen point and relate the Σ-term to $\sigma_{\pi N}$ through the relation:
 \[
 \Sigma = \sigma(2M^2_\pi) + \Delta_R = \sigma_{\pi N} + \Delta_\sigma + \Delta_R
 \]
 [Gasser, Leutwyler and Sainio, PLB 253, (1991)]

- Chiral symmetry allows to relate the $\sigma_{\pi N}$ to the LEC c_1.
- One can obtain this relation calculating $\sigma(t = 0)$ or by means of the Hellmann-Feynman Theorem:

 \[
 \sigma_{\pi N} = -4c_1 M^2_\pi - \frac{3g^2_A M^3_\pi}{16\pi^2 f^2_\pi m_N} \left(\frac{3m^2_N - M^2_\pi}{\sqrt{4m^2_N - M^2_\pi}} \arccos \frac{M_\pi}{2m_N} + M_\pi \log \frac{M_\pi}{m_N} \right)
 \]

 [Alarcon, Martin Camalich and Oller, PRD(R) 85 (2012)]
The pion-nucleon σ-term

- $\sigma_{\pi N}$ is an observable of fundamental importance that embodies the internal scalar structure of the nucleon, related to:
 - Origin of the mass of ordinary matter.
 - Investigations of the QCD phase diagram and neutronic systems.
 - Used in estimations of DM-nucleon SI elastic scattering cross section.

- PWAs extrapolate $\Sigma = f_\pi^2 \bar{D}^+$ to the Cheng-Dashen point and relate the Σ-term to $\sigma_{\pi N}$ through the relation:
 \[\Sigma = \sigma(2M_\pi^2) + \Delta_R = \sigma_{\pi N} + \Delta_\sigma + \Delta_R \]
 \[\text{[Gasser, Leutwyler and Sainio, PLB 253, (1991)]} \]

- Chiral symmetry allows to relate the $\sigma_{\pi N}$ to the LEC c_1.
- One can obtain this relation calculating $\sigma(t = 0)$ or by means of the Hellmann-Feynman Theorem:
 \[\sigma_{\pi N} = -4c_1 M_\pi^2 - \frac{3g_A^2 M_\pi^3}{16\pi^2 f_\pi^2 m_N} \left(\frac{3m_N^2 - M_\pi^2}{\sqrt{4m_N^2 - M_\pi^2}} \arccos \frac{M_\pi}{2m_N} + M_\pi \log \frac{M_\pi}{m_N} \right) \]
 \[\text{[Alarcon, Martin Camalich and Oller, PRD(R) 85 (2012)]} \]
The pion-nucleon σ-term

- $\sigma_{\pi N}$ is an observable of fundamental importance that embodies the internal scalar structure of the nucleon, related to:
 - Origin of the mass of ordinary matter.
 - Investigations of the QCD phase diagram and neutronic systems.
 - Used in estimations of DM-nucleon SI elastic scattering cross section.

- PWAs extrapolate $\Sigma = f^2_\pi \bar{D}^+$ to the Cheng-Dashen point and relate the Σ-term to $\sigma_{\pi N}$ through the relation:
 \[\Sigma = \sigma(2M^2_\pi) + \Delta_R = \sigma_{\pi N} + \Delta_\sigma + \Delta_R \]
 [Gasser, Leutwyler and Sainio, PLB 253, (1991)]

- Chiral symmetry allows to relate the $\sigma_{\pi N}$ to the LEC c_1.
- One can obtain this relation calculating $\sigma(t = 0)$ or by means of the Hellmann-Feynman Theorem:
 \[\sigma_{\pi N} = -4c_1 M^2_\pi - \frac{3g^2_A M^3_\pi}{16\pi^2 f^2_\pi m_N} \left(\frac{3m^2_N - M^2_\pi}{\sqrt{4m^2_N - M^2_\pi}} \arccos \frac{M_\pi}{2m_N} + M_\pi \log \frac{M_\pi}{m_N} \right) \]
 [Alarcon, Martin Camalich and Oller, PRD(R) 85 (2012)]
The pion-nucleon σ-term

- $\sigma_{\pi N}$ is an observable of fundamental importance that embodies the internal scalar structure of the nucleon, related to:
 - Origin of the mass of ordinary matter.
 - Investigations of the QCD phase diagram and neutronic systems.
 - Used in estimations of DM-nucleon SI elastic scattering cross section.

- PWAs extrapolate $\Sigma = f_\pi^2 \bar{D}^+$ to the Cheng-Dashen point and relate the Σ-term to $\sigma_{\pi N}$ through the relation:
 $$\Sigma = \sigma(2M^2_\pi) + \Delta_R = \sigma_{\pi N} + \Delta_\sigma + \Delta_R$$

- Chiral symmetry allows to relate the $\sigma_{\pi N}$ to the LEC c_1.
 - One can obtain this relation calculating $\sigma(t = 0)$ or by means of the Hellmann-Feynman Theorem:
 $$\sigma_{\pi N} = -4c_1 M^2_\pi - \frac{3g_A^2 M^3_\pi}{16\pi^2 f^2_\pi m_N} \left(\frac{3m^2_N - M^2_\pi}{\sqrt{4m^2_N - M^2_\pi}} \arccos \frac{M_\pi}{2m_N} + M_\pi \log \frac{M_\pi}{m_N} \right)$$

[Gasser, Leutwyler and Sainio, PLB 253, (1991)]

[Alarcon, Martin Camalich and Oller, PRD(R) 85 (2012)]
The pion-nucleon σ-term

- $\sigma_{\pi N}$ is an observable of fundamental importance that embodies the internal scalar structure of the nucleon, related to:
 - Origin of the mass of ordinary matter.
 - Investigations of the QCD phase diagram and neutronic systems.
 - Used in estimations of DM-nucleon SI elastic scattering cross section.

- PWAs extrapolate $\Sigma = f_\pi^2 \bar{D}^+$ to the Cheng-Dashen point and relate the Σ-term to $\sigma_{\pi N}$ through the relation:
 $$\Sigma = \sigma(2M_\pi^2) + \Delta_R = \sigma_{\pi N} + \Delta_\sigma + \Delta_R$$
 [Gasser, Leutwyler and Sainio, PLB 253, (1991)]

- Chiral symmetry allows to relate the $\sigma_{\pi N}$ to the LEC c_1.
- One can obtain this relation calculating $\sigma(t = 0)$ or by means of the Hellmann-Feynman Theorem:

$$\sigma_{\pi N} = -4c_1 M_\pi^2 - \frac{3g_A^2 M_\pi^3}{16\pi^2 f_\pi^2 m_N} \left(\frac{3m_N^2 - M_\pi^2}{\sqrt{4m_N^2 - M_\pi^2}} \arccos \frac{M_\pi}{2m_N} + M_\pi \log \frac{M_\pi}{m_N} \right)$$

[Alarcon, Martin Camalich and Oller, PRD(R) 85 (2012)]
The pion-nucleon σ-term

- Good convergence of $\text{EOMS-BChPT} + \Delta(1232) \Rightarrow$ Reliable LECs \Rightarrow Reliable $\sigma_{\pi N}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1 (GeV$^{-1}$)</td>
<td>$-0.80(6)$</td>
<td>$-1.00(4)$</td>
<td>$-1.00(1)$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$\sigma_{\pi N}$ (MeV)</td>
<td>$43(5)$</td>
<td>$59(4)$</td>
<td>$59(2)$</td>
<td>$45(8)$</td>
<td>$64(7)$</td>
<td>$56(9)$</td>
</tr>
</tbody>
</table>

- We confirm from ChPT the discrepancy between KA85 and WI08.
- WI08 and EM06 agree remarkably well! \Rightarrow Different systematics but both include new and high quality data.
- \Rightarrow Modern data points to a relatively high $\sigma_{\pi N}$.
The pion-nucleon σ-term

- Good convergence of $\text{EOMS-BChPT} + \Delta(1232) \Rightarrow$ Reliable LECs \Rightarrow Reliable $\sigma_{\pi N}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1 (GeV$^{-1}$)</td>
<td>$-0.80(6)$</td>
<td>$-1.00(4)$</td>
<td>$-1.00(1)$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$\sigma_{\pi N}$ (MeV)</td>
<td>$43(5)$</td>
<td>$59(4)$</td>
<td>$59(2)$</td>
<td>$45(8)$</td>
<td>$64(7)$</td>
<td>$56(9)$</td>
</tr>
</tbody>
</table>

- We confirm from ChPT the discrepancy between KA85 and WI08.
- WI08 and EM06 agree remarkably well! \Rightarrow Different systematics but both include new and high quality data.
- \Rightarrow Modern data points to a relatively high $\sigma_{\pi N}$.
The pion-nucleon σ-term

- Good convergence of EOMS-BChPT+$\Delta(1232)$ ⇒ Reliable LECs ⇒ Reliable $\sigma_{\pi N}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ-ChPT</td>
<td>Δ-ChPT</td>
<td>Δ-ChPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_1 (GeV$^{-1}$)</td>
<td>$-0.80(6)$</td>
<td>$-1.00(4)$</td>
<td>$-1.00(1)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_{\pi N}$ (MeV)</td>
<td>$43(5)$</td>
<td>$59(4)$</td>
<td>$59(2)$</td>
<td>$45(8)$</td>
<td>$64(7)$</td>
<td>$56(9)$</td>
</tr>
</tbody>
</table>

- We confirm from ChPT the discrepancy between KA85 and WI08.
- WI08 and EM06 agree remarkably well! → Different systematics but both include new and high quality data.
- Modern data points to a relatively high $\sigma_{\pi N}$.
The pion-nucleon σ-term

- Good convergence of $\text{EOMS-BChPT} + \Delta(1232)$ ⇒ Reliable LECs ⇒ Reliable $\sigma_{\pi N}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1 (GeV$^{-1}$)</td>
<td>$-0.80(6)$</td>
<td>$-1.00(4)$</td>
<td>$-1.00(1)$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$\sigma_{\pi N}$ (MeV)</td>
<td>$43(5)$</td>
<td>$59(4)$</td>
<td>$59(2)$</td>
<td>$45(8)$</td>
<td>$64(7)$</td>
<td>$56(9)$</td>
</tr>
</tbody>
</table>

- We confirm from ChPT the discrepancy between KA85 and WI08.
- WI08 and EM06 agree remarkably well! ⇒ Different systematics but both include new and high quality data.
- Modern data points to a relatively high $\sigma_{\pi N}$.
The pion-nucleon σ-term

- Good convergence of EOMS-BChPT+$\Delta(1232) \Rightarrow$ Reliable LECs \Rightarrow Reliable $\sigma_{\pi N}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1 (GeV$^{-1}$)</td>
<td>$-0.80(6)$</td>
<td>$-1.00(4)$</td>
<td>$-1.00(1)$</td>
<td>$-\quad$</td>
<td>$-\quad$</td>
<td>$-\quad$</td>
</tr>
<tr>
<td>$\sigma_{\pi N}$ (MeV)</td>
<td>$43(5)$</td>
<td>$59(4)$</td>
<td>$59(2)$</td>
<td>$45(8)$</td>
<td>$64(7)$</td>
<td>$56(9)$</td>
</tr>
</tbody>
</table>

- We confirm from ChPT the discrepancy between KA85 and WI08.
- WI08 and EM06 agree remarkably well! \rightarrow Different systematics but both include new and high quality data.

- \Rightarrow Modern data points to a relatively high $\sigma_{\pi N}$.
The pion-nucleon σ-term

- Good convergence of EOMS-BChPT+$\Delta(1232)$ \Rightarrow Reliable LECs \Rightarrow Reliable $\sigma_{\pi N}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1 (GeV$^{-1}$)</td>
<td>$-0.80(6)$</td>
<td>$-1.00(4)$</td>
<td>$-1.00(1)$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$\sigma_{\pi N}$ (MeV)</td>
<td>$43(5)$</td>
<td>$59(4)$</td>
<td>$59(2)$</td>
<td>$45(8)$</td>
<td>$64(7)$</td>
<td>$56(9)$</td>
</tr>
</tbody>
</table>

- We confirm from ChPT the discrepancy between KA85 and WI08.
- WI08 and EM06 agree remarkably well! \rightarrow Different systematics but both include new and high quality data.
- \Rightarrow Modern data points to a relatively high $\sigma_{\pi N}$.

The pion-nucleon σ-term

Higher order corrections:
- $\mathcal{O}(p^{7/2})$ (N2LO):

\[\Rightarrow -6 \text{ MeV} \text{ (to be compared with } -19 \text{ MeV at } \mathcal{O}(p^3)) \]

- $\mathcal{O}(p^4)$ (N3LO):

\[\Rightarrow -2 \cdots - 4 \text{ MeV} \]

(Extra contributions from $\mathcal{O}(p^4)$ LECs is estimated to be ~ 1 MeV)
The pion-nucleon σ-term

<table>
<thead>
<tr>
<th>$\sigma_{\pi N}$ (MeV)</th>
<th>LO</th>
<th>NLO</th>
<th>$N^2\text{LO}$</th>
<th>$N^3\text{LO}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>78–62</td>
<td>−19</td>
<td>−6</td>
<td>−3(2)</td>
<td></td>
</tr>
</tbody>
</table>

⇒ Chiral expansion shows a clear convergent pattern!

• Comparison with independent phenomenology:
 • h_A → Only WI08 Δ-ChPT is compatible with the $\Delta(1232)$ BW width.
 • Δ_{GT} → WI08 Δ-ChPT and EM06 Δ-ChPT give a Δ_{GT} compatible with independent determinations (NN scattering and π-atoms).
 • a_{0+}^+ → Strongly constrains the value of $\sigma_{\pi N}$:

<table>
<thead>
<tr>
<th>a_{0+}^+ ($10^{-3} M_{\pi}^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KA85 Δ-ChPT</td>
</tr>
<tr>
<td>WI08 Δ-ChPT</td>
</tr>
<tr>
<td>EM06 Δ-ChPT</td>
</tr>
<tr>
<td>π-atom ($\pi^+ p$, $\pi^- p$)</td>
</tr>
</tbody>
</table>

[Baru, et. al., PLB 694 (2011)]
The pion-nucleon σ-term

<table>
<thead>
<tr>
<th></th>
<th>LO</th>
<th>NLO</th>
<th>N^2LO</th>
<th>N^3LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{\pi N}$ (MeV)</td>
<td>78–62</td>
<td>−19</td>
<td>−6</td>
<td>−3(2)</td>
</tr>
</tbody>
</table>

\Rightarrow Chiral expansion shows a clear convergent pattern!
- Comparison with independent phenomenology:
 - $h_A \rightarrow$ Only WI08 Δ-ChPT is compatible with the $\Delta(1232)$ BW width.
 - $\Delta_{GT} \rightarrow$ WI08 Δ-ChPT and EM06 Δ-ChPT give a Δ_{GT} compatible with independent determinations (NN scattering and π-atoms).
 - $a_{0+}^{+} \rightarrow$ Strongly constrains the value of $\sigma_{\pi N}$:

<table>
<thead>
<tr>
<th></th>
<th>a_{0+}^+ $(10^{-3} M_{\pi}^{-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>KA85 Δ-ChPT</td>
<td>−11(10)</td>
</tr>
<tr>
<td>WI08 Δ-ChPT</td>
<td>−1.2(3.3)</td>
</tr>
<tr>
<td>EM06 Δ-ChPT</td>
<td>2.3(2.0)</td>
</tr>
<tr>
<td>π-atom ($\pi^+ p$, $\pi^- p$)</td>
<td>−1.0(9)</td>
</tr>
</tbody>
</table>

$\sigma_{\pi N} = 59(7)$ MeV

[Baru, et. al., PLB 694 (2011)]

Gasser, et. al., PLB 253 (1991)
Part V

Summary and Conclusions
Summary and Conclusions

- We performed a novel analysis in covariant BChPT within the EOMS scheme up to $\mathcal{O}(p^3)$ including the Δ.
- We use different PWAs as an input to fix the LECs of the chiral Lagrangians.
- We show how EOMS-BChPT+$\Delta(1232)$ achieves the best convergence both in the physical and subthreshold regions.
 - Excellent description of the data up to 1.20 GeV.
 - Good description of the subthreshold region with amplitude fitted in the physical region.
 - Accurate and reliable value of $\sigma_{\pi N} \Rightarrow$
 \[
 \sigma_{\pi N} = 59(7) \text{ MeV}
 \]
 Compatible with updated phenomenology!
- \Rightarrow The inclusion of the $\Delta(1232)$ gives a boost to BChPT!
Summary and Conclusions

- We performed a novel analysis in covariant BChPT within the EOMS scheme up to $\mathcal{O}(p^3)$ including the Δ.
- We use different PWAs as an input to fix the LECs of the chiral Lagrangians.
- We show how EOMS-BChPT+$\Delta(1232)$ achieves the best convergence both in the physical and subthreshold regions.
 - Excellent description of the data up to 1.20 GeV.
 - Good description of the subthreshold region with amplitude fitted in the physical region.
 - Accurate and reliable value of $\sigma_{\pi N} \Rightarrow$

\[\sigma_{\pi N} = 59(7) \text{ MeV} \]

Compatible with updated phenomenology!

\Rightarrow The inclusion of the $\Delta(1232)$ gives a boost to BChPT!
Summary and Conclusions

- We performed a novel analysis in covariant BChPT within the EOMS scheme up to $\mathcal{O}(p^3)$ including the Δ.
- We use different PWAs as an input to fix the LECs of the chiral Lagrangians.
- We show how EOMS-BChPT+$\Delta(1232)$ achieves the best convergence both in the physical and subthreshold regions.

 - Excellent description of the data up to 1.20 GeV.
 - Good description of the subthreshold region with amplitude fitted in the physical region.
 - Accurate and reliable value of $\sigma_{\pi N}$ ⇒ $\sigma_{\pi N} = 59(7) \text{ MeV}$

 Compatible with updated phenomenology!

 ⇒ The inclusion of the $\Delta(1232)$ gives a boost to BChPT!
Summary and Conclusions

- We performed a novel analysis in covariant BChPT within the EOMS scheme up to $O(p^3)$ including the Δ.
- We use different PWAs as an input to fix the LECs of the chiral Lagrangians.
- We show how EOMS-BChPT+$\Delta(1232)$ achieves the best convergence both in the physical and subthreshold regions.
 - Excellent description of the data up to 1.20 GeV.
 - Good description of the subthreshold region with amplitude fitted in the physical region.
 - Accurate and reliable value of $\sigma_{\pi N} \Rightarrow$

$$\sigma_{\pi N} = 59(7) \text{ MeV}$$

Compatible with updated phenomenology!

- \Rightarrow The inclusion of the $\Delta(1232)$ gives a boost to BChPT!
Summary and Conclusions

- We performed a novel analysis in covariant BChPT within the EOMS scheme up to $O(p^3)$ including the Δ.
- We use different PWAs as an input to fix the LECs of the chiral Lagrangians.
- We show how EOMS-BChPT+$\Delta(1232)$ achieves the best convergence both in the physical and subthreshold regions.
 - Excellent description of the data up to 1.20 GeV.
 - Good description of the subthreshold region with amplitude fitted in the physical region.
 - Accurate and reliable value of $\sigma_{\pi N} \Rightarrow \sigma_{\pi N} = 59(7)$ MeV

Compatible with updated phenomenology!

\Rightarrow The inclusion of the $\Delta(1232)$ gives a boost to BChPT!
Summary and Conclusions

- We performed a novel analysis in covariant BChPT within the EOMS scheme up to $\mathcal{O}(p^3)$ including the Δ.
- We use different PWAs as an input to fix the LECs of the chiral Lagrangians.
- We show how EOMS-BChPT+$\Delta(1232)$ achieves the best convergence both in the physical and subthreshold regions.
 - Excellent description of the data up to 1.20 GeV.
 - Good description of the subthreshold region with amplitude fitted in the physical region.
 - Accurate and reliable value of $\sigma_{\pi N} \Rightarrow$

$$\sigma_{\pi N} = 59(7) \text{ MeV}$$

- Compatible with updated phenomenology!
- The inclusion of the $\Delta(1232)$ gives a boost to BChPT!
Summary and Conclusions

- We performed a novel analysis in covariant BChPT within the EOMS scheme up to $\mathcal{O}(p^3)$ including the Δ.
- We use different PWAs as an input to fix the LECs of the chiral Lagrangians.
- We show how EOMS-BChPT+$\Delta(1232)$ achieves the best convergence both in the physical and subthreshold regions.
 - Excellent description of the data up to 1.20 GeV.
 - Good description of the subthreshold region with amplitude fitted in the physical region.
 - Accurate and reliable value of $\sigma_{\pi N} \Rightarrow$

\[
\sigma_{\pi N} = 59(7) \text{ MeV}
\]

Compatible with updated phenomenology!
- \RightarrowThe inclusion of the $\Delta(1232)$ gives a boost to BChPT!
We performed a novel analysis in covariant BChPT within the EOMS scheme up to $\mathcal{O}(p^3)$ including the Δ.

We use different PWAs as an input to fix the LECs of the chiral Lagrangians.

We show how EOMS-BChPT+$\Delta(1232)$ achieves the best convergence both in the physical and subthreshold regions.
- Excellent description of the data up to 1.20 GeV.
- Good description of the subthreshold region with amplitude fitted in the physical region.
- Accurate and reliable value of $\sigma_{\pi N} \Rightarrow$

$$\sigma_{\pi N} = 59(7) \text{ MeV}$$

Compatible with updated phenomenology!

$$\Rightarrow$$ The inclusion of the $\Delta(1232)$ gives a boost to BChPT!
We performed a novel analysis in covariant BChPT within the EOMS scheme up to $\mathcal{O}(p^3)$ including the Δ.

We use different PWAs as an input to fix the LECs of the chiral Lagrangians.

We show how EOMS-BChPT+$\Delta(1232)$ achieves the best convergence both in the physical and subthreshold regions.

- Excellent description of the data up to 1.20 GeV.
- Good description of the subthreshold region with amplitude fitted in the physical region.
- Accurate and reliable value of $\sigma_{\pi N} \Rightarrow$

$$\sigma_{\pi N} = 59(7) \text{ MeV}$$

Compatible with updated phenomenology!

\Rightarrow The inclusion of the $\Delta(1232)$ gives a boost to BChPT!
Part VI

Spares
Section 1

Fits
Red line: Δ-ChPT. Green line: $\not\Delta$-ChPT.
Fits

EM06

Red line: Δ-ChPT. Green line: Δ-ChPT.
Section 2

The Goldberger-Treiman Relation
The Goldberger-Treiman Relation

- The Goldberger-Treiman relation is a pre-PCAC relation that relies on the conservation of the spontaneously broken chiral symmetry.
- The non-exact conservation of this symmetry due to the quark masses leads to a deviation from this relation (Δ_{GT}) that can be extracted from experimental information.

This deviation is usually defined as:

$$g_{\pi N} = \frac{g_A m_N}{f_\pi} (1 + \Delta_{GT})$$

Studies based on πN and NN PWA leads to $\Delta_{GT} = 1 - 3\%$

- In ChPT $\Rightarrow \Delta_{GT} = -\frac{2M^2_\pi d_{18}}{g_A} + \Delta_{loops}$
The Goldberger-Treiman Relation

- The Goldberger-Treiman relation is a pre-PCAC relation that relies on the conservation of the spontaneously broken chiral symmetry.
- The non-exact conservation of this symmetry due to the quark masses leads to a deviation from this relation (Δ_{GT}) that can be extracted from experimental information.

This deviation is usually defined as:

$$g_{\pi N} = \frac{g_A m_N}{f_\pi} (1 + \Delta_{GT})$$

Studies based on πN and NN PWA leads to $\Delta_{GT} = 1 - 3\%$

- In ChPT $\Rightarrow \Delta_{GT} = -\frac{2M_{\pi}^2 d_{18}}{g_A} + \Delta_{loops}$
The Goldberger-Treiman Relation

- The Goldberger-Treiman relation is a pre-PCAC relation that relies on the conservation of the spontaneously broken chiral symmetry.
- The non-exact conservation of this symmetry due to the quark masses leads to a deviation from this relation (Δ_{GT}) that can be extracted from experimental information.

This deviation is usually defined as:

$$g_{\pi N} = \frac{g_A m_N}{f_\pi} (1 + \Delta_{GT})$$

Studies based on πN and NN PWA leads to $\Delta_{GT} = 1 - 3\%$ [Arndt, Workman and Pavan, PRC 49 (1994)], [Schröder et al., EPJ C 21 (2001)], [de Swart, Rentmeester and Timmermans, πN Newsletter 13 (1997)].

- In ChPT $\Rightarrow \Delta_{GT} = -\frac{2M^2_\pi d_{18}}{g_A} + \Delta_{loops}$
The Goldberger-Treiman Relation

- The Goldberger-Treiman relation is a pre-PCAC relation that relies on the conservation of the spontaneously broken chiral symmetry.
- The non-exact conservation of this symmetry due to the quark masses leads to a deviation from this relation (Δ_{GT}) that can be extracted from experimental information.

This deviation is usually defined as:

$$g_{\pi N} = \frac{g_A m_N}{f_\pi} (1 + \Delta_{GT})$$

Studies based on πN and NN PWA leads to $\Delta_{GT} = 1 - 3\%$ [Arndt, Workman and Pavan, PRC 49 (1994)], [Schröder et al., EPJ C 21 (2001)], [de Swart, Rentmeester and Timmermans, πN Newsletter 13 (1997)].

- In ChPT $\Rightarrow \Delta_{GT} = -\frac{2M_\pi^2 d_{18}}{g_A} + \Delta_{loops}$
We calculate explicitly the contribution of the EOMS renormalized loops ($\Delta_{EOMS}^{\text{loops}}$) to Δ_{GT} by comparing directly $g_{\pi N}$ and g_A → $\Delta_{EOMS}^{\text{loops}} \approx 0.4\%$ ⇒ We recover the result of Gasser et al. [Gasser, Sainio and Svarc, NPB 307:779 (1988)].
The Goldberger-Treiman Relation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_{GT}</td>
<td>$9(4)%$</td>
<td>$2(4)%$</td>
<td>$3.6(7)%$</td>
<td>$5.1(8)%$</td>
<td>$1.0(2.4)%$</td>
<td>$2.00(36)%$</td>
</tr>
<tr>
<td>$g_{\pi N}$</td>
<td>$14.03(52)$</td>
<td>$13.13(52)$</td>
<td>$13.34(10)$</td>
<td>$13.53(10)$</td>
<td>$13.00(31)$</td>
<td>$13.13(5)$</td>
</tr>
<tr>
<td>Δ_{GT}</td>
<td>$4.5(7)%$</td>
<td>$2.1(1)%$</td>
<td>$0.2(1.0)%$</td>
<td>1%</td>
<td></td>
<td>1.9(7)%</td>
</tr>
<tr>
<td>$g_{\pi N}$</td>
<td>$13.46(9)$</td>
<td>$13.15(1)$</td>
<td>$12.90(12)$</td>
<td>$\simeq 13.0$</td>
<td></td>
<td>$13.12(9)$</td>
</tr>
</tbody>
</table>

- We calculate explicitly the contribution of the EOMS renormalized loops (Δ_{EOMS}^{loops}) to Δ_{GT} by comparing directly $g_{\pi N}$ and g_A → $\Delta_{EOMS}^{loops} \approx 0.4\%$ ⇒ We recover the result of Gasser et al. [Gasser, Sainio and Svarc, NPB 307:779 (1988)]
Taking the fits up to $\sqrt{s_{\text{max}}} = 1.20$ GeV in the Δ-ChPT case.

<table>
<thead>
<tr>
<th></th>
<th>KA85 [1] Δ-ChPT</th>
<th>WI08 [1] Δ-ChPT</th>
<th>EM06 [1] Δ-ChPT</th>
<th>KA85 [1] Δ-ChPT</th>
<th>WI08 [1] Δ-ChPT</th>
<th>EM06 [1] Δ-ChPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_{GT}</td>
<td>9(4)%</td>
<td>2(4)%</td>
<td>3.6(7)%</td>
<td>4.9(8)%</td>
<td>2.1(8)%</td>
<td>1.9(4)%</td>
</tr>
<tr>
<td>$g_{\pi N}$</td>
<td>14.03(52)</td>
<td>13.13(52)</td>
<td>13.34(10)</td>
<td>13.53(10)</td>
<td>13.00(31)</td>
<td>13.13(5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_{GT}</td>
<td>4.5(7)%</td>
<td>2.1(1)%</td>
<td>0.2(1.0)%</td>
<td>1%</td>
<td>1.9(7)%</td>
</tr>
<tr>
<td>$g_{\pi N}$</td>
<td>13.46(9)</td>
<td>13.15(1)</td>
<td>12.90(12)</td>
<td>$\simeq 13.0$</td>
<td>13.12(9)</td>
</tr>
</tbody>
</table>

Section 3

σ_s
σₚₚ

Using σₚₚ one can calculate:

\[\sigma_s = \frac{1}{2m_N} \langle N | m_s \bar{s}s | N \rangle \]
\[y = \frac{2 \langle N | \bar{s}s | N \rangle}{\langle N | \bar{u}u + \bar{d}d | N \rangle} \]

<table>
<thead>
<tr>
<th></th>
<th>σₓ (MeV)</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>σₓN = 59(7) MeV [1]</td>
<td>16(80)(60)</td>
<td>0.02(13)(10)</td>
</tr>
<tr>
<td>σₓN = 45(7) MeV [2]</td>
<td>-150(80)(60)</td>
<td>-0.28(13)(10)</td>
</tr>
</tbody>
</table>

Section 4

Nuclear Matter
\(\rho \cdot \sigma_{\pi N} \) controls the leading contribution in the density dependence of the quark condensate.

- \(\sigma_{\pi N} \approx 45 \text{ MeV} \Rightarrow \langle \bar{q}q \rangle \sim 0 \) for \(\rho \sim 3\rho_0 \)
- \(\sigma_{\pi N} \approx 60 \text{ MeV} \Rightarrow \langle \bar{q}q \rangle \sim 0 \) for \(\rho \sim 2\rho_0 \)

However to recover chiral symmetry in the medium is necessary \(f_t \rightarrow 0 \), which is controlled (LO) by \(c_2 + c_3 \).

- Taking into account our mean values for these LECs (for EOMS-ChPT+\(\Delta(1232) \)), that combination differs only a 10%.
\(\rho \cdot \sigma_{\pi N} \) controls the leading contribution in the density dependence of the quark condensate.

- \(\sigma_{\pi N} \sim 45 \text{ MeV} \Rightarrow \langle \bar{q}q \rangle \sim 0 \) for \(\rho \sim 3\rho_0 \)
- \(\sigma_{\pi N} \sim 60 \text{ MeV} \Rightarrow \langle \bar{q}q \rangle \sim 0 \) for \(\rho \sim 2\rho_0 \)

However to recover chiral symmetry in the medium is necessary \(f_t \rightarrow 0 \), which is controlled (LO) by \(c_2 + c_3 \).

- Taking into account our mean values for these LECs (for \(\text{EOMS-ChPT+}\Delta(1232) \)), that combination differs only a 10%.
$\rho \cdot \sigma_{\pi N}$ controls the leading contribution in the density dependence of the quark condensate.

- $\sigma_{\pi N} \sim 45 \text{ MeV} \Rightarrow \langle \bar{q}q \rangle \sim 0 \text{ for } \rho \sim 3\rho_0$
- $\sigma_{\pi N} \sim 60 \text{ MeV} \Rightarrow \langle \bar{q}q \rangle \sim 0 \text{ for } \rho \sim 2\rho_0$

However to recover chiral symmetry in the medium is necessary $f_t \to 0$, which is controlled (LO) by $c_2 + c_3$.

- Taking into account our mean values for these LECs (for EOMS-ChPT+$\Delta(1232)$), that combination differs only a 10%.
\[\rho \cdot \sigma_{\pi N} \] controls the leading contribution in the density dependence of the quark condensate.

\begin{itemize}
 \item \(\sigma_{\pi N} \sim 45 \text{ MeV} \Rightarrow \langle \bar{q}q \rangle \sim 0 \text{ for } \rho \sim 3\rho_0 \)
 \item \(\sigma_{\pi N} \sim 60 \text{ MeV} \Rightarrow \langle \bar{q}q \rangle \sim 0 \text{ for } \rho \sim 2\rho_0 \)
\end{itemize}

However to recover chiral symmetry in the medium is necessary \(f_t \rightarrow 0 \), which is controlled (LO) by \(c_2 + c_3 \).

- Taking into account our mean values for these LECs (for EOMS-ChPT+\(\Delta(1232) \)), that combination differs only a 10%.
Section 5

Δ-HBChPT
Summary of the results of [Fettes and Meißner, NPA 679 (2001)]:

<table>
<thead>
<tr>
<th>LEC</th>
<th>EM98</th>
<th>EM98((g_{\pi N\Delta} = 1.05))</th>
<th>KA85((g_{\pi N\Delta} = 1.05))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>0.77(2)</td>
<td>0.39(2)</td>
<td>-0.44(1)</td>
</tr>
<tr>
<td>(g_{\pi N\Delta})</td>
<td>1.32(3)</td>
<td>1.05*</td>
<td>0.98(5)</td>
</tr>
<tr>
<td>(\Delta_{GT})</td>
<td>(input)</td>
<td>(input)</td>
<td>(input)</td>
</tr>
<tr>
<td>(\sigma_{\pi N}) (MeV)</td>
<td>< 0</td>
<td>< 0</td>
<td>51.1</td>
</tr>
</tbody>
</table>

"We remark that the sigma term can not be obtained directly from scattering data".

[Fettes and Meißner, NPA 679 (2001)]

Using sum rules that completely determine \(\sigma_{\pi N}\) from threshold parameters:

<table>
<thead>
<tr>
<th>LEC</th>
<th>EM98</th>
<th>KA85</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>-0.18(2)</td>
<td>-0.35(9)</td>
</tr>
<tr>
<td>(g_{\pi N\Delta})</td>
<td>1.27(4)</td>
<td>1.00(8)</td>
</tr>
<tr>
<td>(\Delta_{GT})</td>
<td>(input)</td>
<td>(input)</td>
</tr>
<tr>
<td>(\sigma_{\pi N}) (MeV)</td>
<td>58.5(5.4)</td>
<td>45.5(2.7)</td>
</tr>
</tbody>
</table>
Section 6

Isospin breaking corrections
Isospin breaking corrections

The QCD Lagrangian contains an explicit chiral symmetry breaking term:

\[H_{\text{mass}} = m_u \bar{u}u + m_d \bar{d}d \Rightarrow \]
\[H_{\text{mass}} = \frac{m_u + m_d}{2}(\bar{u}u + \bar{d}d) + \frac{m_u - m_d}{2}(\bar{u}u - \bar{d}d) \]

- \(\frac{m_u + m_d}{2}(\bar{u}u + \bar{d}d) \) → Isospin symmetric.
- \(\frac{m_u - m_d}{2}(\bar{u}u - \bar{d}d) \) → Isospin breaking part.

→ But \(m_u + m_d \) and \(m_u - m_d \) are of the same order!

- However, [Fettes and Meißner, NPA 693, 693 (2001)] shows that \(\pi N \) scattering receives corrections of the order of 2%.
- Concretely, for the \(S \)-waves (the most relevant for \(\sigma_{\pi N} \)) the corrections are of \(\approx 0.7\% \).
Isospin breaking corrections

The QCD Lagrangian contains an explicit chiral symmetry breaking term:

\[H_{\text{mass}} = m_u \bar{u}u + m_d \bar{d}d \Rightarrow \]
\[H_{\text{mass}} = \frac{m_u + m_d}{2}(\bar{u}u + \bar{d}d) + \frac{m_u - m_d}{2}(\bar{u}u - \bar{d}d) \]

- \(\frac{m_u + m_d}{2}(\bar{u}u + \bar{d}d) \rightarrow \) Isospin symmetric.
- \(\frac{m_u - m_d}{2}(\bar{u}u - \bar{d}d) \rightarrow \) Isospin breaking part.

\(\rightarrow \) But \(m_u + m_d \) and \(m_u - m_d \) are of the same order!

- However, [Fettes and Meißner, NPA 693, 693 (2001)] shows that \(\pi N \) scattering receives corrections of the order of 2%.
- Concretely, for the \(S \)-waves (the most relevant for \(\sigma_{\pi N} \)) the corrections are of \(\approx 0.7\% \).
Isospin breaking corrections

The QCD Lagrangian contains an explicit chiral symmetry breaking term:

\[H_{\text{mass}} = m_u \bar{u}u + m_d \bar{d}d \Rightarrow \]
\[H_{\text{mass}} = \frac{m_u + m_d}{2} (\bar{u}u + \bar{d}d) + \frac{m_u - m_d}{2} (\bar{u}u - \bar{d}d) \]

- \[\frac{m_u + m_d}{2} (\bar{u}u + \bar{d}d) \rightarrow \text{Isospin symmetric.} \]
- \[\frac{m_u - m_d}{2} (\bar{u}u - \bar{d}d) \rightarrow \text{Isospin breaking part.} \]

\[\rightarrow \text{But } m_u + m_d \text{ and } m_u - m_d \text{ are of the same order!} \]

- However, [Fettes and Meißner, NPA 693, 693 (2001)] shows that \(\pi N \) scattering receives corrections of the order of 2%.

- Concretely, for the S-waves (the most relevant for \(\sigma_{\pi N} \)) the corrections are of \(\approx 0.7\% \).
Isospin breaking corrections

The QCD Lagrangian contains an explicit chiral symmetry breaking term:

\[H_{\text{mass}} = m_u \bar{u}u + m_d \bar{d}d \Rightarrow \]

\[H_{\text{mass}} = \frac{m_u + m_d}{2} (\bar{u}u + \bar{d}d) + \frac{m_u - m_d}{2} (\bar{u}u - \bar{d}d) \]

- \(\frac{m_u + m_d}{2} (\bar{u}u + \bar{d}d) \) \(\rightarrow \) Isospin symmetric.
- \(\frac{m_u - m_d}{2} (\bar{u}u - \bar{d}d) \) \(\rightarrow \) Isospin breaking part.

\(\rightarrow \) But \(m_u + m_d \) and \(m_u - m_d \) are of the same order!

- However, [Fettes and Meißner, NPA 693, 693 (2001)] shows that \(\pi N \) scattering receives corrections of the order of 2%.
- Concretely, for the \(S \)-waves (the most relevant for \(\sigma_{\pi N} \)) the corrections are of \(\approx 0.7\% \)
Isospin breaking corrections

The QCD Lagrangian contains an explicit chiral symmetry breaking term:

\[H_{\text{mass}} = m_u \bar{u}u + m_d \bar{d}d \Rightarrow \]
\[H_{\text{mass}} = \frac{m_u + m_d}{2}(\bar{u}u + \bar{d}d) + \frac{m_u - m_d}{2}(\bar{u}u - \bar{d}d) \]

- \(\frac{m_u + m_d}{2}(\bar{u}u + \bar{d}d) \rightarrow \) Isospin symmetric.
- \(\frac{m_u - m_d}{2}(\bar{u}u - \bar{d}d) \rightarrow \) Isospin breaking part.

\[\rightarrow \text{But } m_u + m_d \text{ and } m_u - m_d \text{ are of the same order!} \]

\[\rightarrow \text{However, [Fettes and Meißner, NPA 693, 693 (2001)] shows that } \pi N \text{ scattering receives corrections of the order of } 2\%. \]

\[\rightarrow \text{Concretely, for the } S\text{-waves (the most relevant for } \sigma_{\pi N} \text{) the corrections are of } \approx 0.7\%. \]
Isospin breaking corrections

The QCD Lagrangian contains an explicit chiral symmetry breaking term:

\[H_{mass} = m_u \bar{u}u + m_d \bar{d}d \Rightarrow \]

\[H_{mass} = \frac{m_u + m_d}{2}(\bar{u}u + \bar{d}d) + \frac{m_u - m_d}{2}(\bar{u}u - \bar{d}d) \]

- \(\frac{m_u + m_d}{2}(\bar{u}u + \bar{d}d) \) → Isospin symmetric.
- \(\frac{m_u - m_d}{2}(\bar{u}u - \bar{d}d) \) → Isospin breaking part.

→ But \(m_u + m_d \) and \(m_u - m_d \) are of the same order!

- However, [Fettes and Meißner, NPA 693, 693 (2001)] shows that \(\pi N \) scattering receives corrections of the order of 2%.
- Concretely, for the \(S \)-waves (the most relevant for \(\sigma_{\pi N} \)) the corrections are of \(\approx 0.7\% \)

J. A. Oller and U. G. Meißner,

J. Gegelia, G. Japaridze, K. Turashvili, Theoretical and Mathematical Physics, Vol. 101, No. 2, 1994 (Translated from Russian)

Baru, et. al., PLB 694 (2011).

