Fourth Generation Quark
and
Vector Like Quark
with
the ATLAS detector

Léa Gauthier (CEA-Saclay / Montréal University)
on behalf of the ATLAS collaboration
Quark Confinement and the Hadron Spectrum X
Fourth Generation Quark:

- **new chiral generation**: SU(2) doublet (t',b') with the corresponding right-handed singlets under SU(2)
- **new CP violation** to explain matter dominated Universe
- **model disfavored** by $m_H \sim 126$ GeV (arXiv:1207.0438)
- **saved by extended 4th generation**
- **latest results presented here**:
 - $m(Q) > 350$ GeV for up and down type Q
 - $m(t') > 656$ GeV $m(b') > 670$ GeV
Fourth Generation Quark:

- new chiral generation: SU(2) doublet (t', b') with the corresponding right-handed singlets under SU(2)
- new CP violation to explain matter dominated Universe
- model disfavored by $m_H \sim 126$ GeV (arXiv:1207.0438)
- saved by extended 4th generation
- latest results presented here:
 - $m(Q) > 350$ GeV for up and down type Q
 - $m(t') > 656$ GeV, $m(b') > 670$ GeV

Vector Like Quark:

- both right and left handed components transform the same way under the EW gauge groups
- VLQs have been introduced in many different models: Composite Higgs, Extra Dimension, SUSY
- VLQs fix the hierarchy problem and explain the observed A_{FB} asymmetry of bottom quark
- VLQs mix with 3rd generation SM quarks (constraints from EWK precision and flavor observables)
- mixing to first generations is not excluded (in some models corrections to the quark mixings can cancel relaxing these constraints)
Events were studied in l+jets and dilepton channel (e and μ) @ 7 TeV between 1.98 fb$^{-1}$ and 4.7 fb$^{-1}$

Events studied:

- **Fourth generation quarks**: $QQ \rightarrow W^+qW^-\bar{q}$ for up and down type Q
 - $t' \bar{t} \rightarrow Wb\bar{Wb}$ and VLQ interpretation of $t' \rightarrow Wb$ $t' \rightarrow Zt$ $t' \rightarrow Ht$
 - $b'\bar{b'} \rightarrow Wt\bar{Wt}$

- **Vector Like Quarks**: VLQs with charge 5/3 for different coupling value $\lambda(T_{5/3}tW)$
 - VLQ interpretation of $b'\bar{b'} \rightarrow Zb+X$ (vector like singlet model)
 - single production of VLQ coupling to light generations
Searches

Events were studied in l+jets and dilepton channel (e and μ) @ 7 TeV between 1.98 fb⁻¹ and 4.7 fb⁻¹

Events studied:

- Fourth generation quarks: \(\bar{Q}Q \rightarrow W^+qW^-\bar{q} \) for up and down type Q
 \[t' \bar{t} \rightarrow WbW\bar{b} \] and VLQ interpretation of \(t' \rightarrow Wb \ t' \rightarrow Zt \ t' \rightarrow Ht \)
 \[b\bar{b} \rightarrow WtW\bar{t} \]

- Vector Like Quarks: VLQs with charge 5/3 for different coupling value \(\lambda(t_{5/3}tW) \)
 VLQ interpretation of \(b\bar{b}' \rightarrow Zb+X \) (vector like singlet model)
 single production of VLQ coupling to light generations

Events are selected based on top quark selection:

- Electrons:
 - \(P_T > 25 \text{ GeV} \)
 - \(|\eta| < 2.47 \) and not \(1.37 < |\eta| < 1.52 \)
 - isolated

- Muons:
 - \(P_T > 20 \text{ GeV} \)
 - \(|\eta| < 2.50 \)
 - Isolated
 - cosmic rejection

- Jets:
 - anti-k\(_T\) \(\Delta R=0.4 \)
 - \(P_T > 25 \text{ GeV} \)
 - \(|\eta| < 2.50 \)
 - not inside an electron

Limits are extracted using Cls (except Bayesian for single production of VLQ coupling to light generations)
Background

★ For the dilepton final state:
- dibosons: WW, WZ and ZZ (Herwig or Alpgen + Jimmy)
- fake leptons (data-driven: matrix method)

★ for the opposite sign (OS) leptons:
- $t\bar{t}$ and single top (MC@NLO+Herwig)
- Z+jets (Alpgen + Jimmy or Sherpa)
- Drell-Yann events (data-driven technique that extrapolates from a control region)
★ for the same sign (SS) leptons:
- $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}WW$, WWjj (MadGraph + Pythia)
- charge flip (data-driven)

★ For the single lepton final state:
- dibosons: WW, WZ and ZZ (Herwig)
- $t\bar{t}$ (Alpgen+Herwig or MC@NLO+Herwig)
- single top (MC@NLO+Herwig or AcerMC+Pythia)
- W+jets, Z+jets (Alpgen + Herwig or Sherpa)
- $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}WW$, WWjj (MadGraph + Pythia for b' analysis with W only)
- multijets (data-driven)
Systematic uncertainties

- **For the Monte Carlo:**
 - object calibration, resolution and energy scale, missing energy
 - trigger and reconstruction efficiency
 - initial and final state radiations
 - luminosity
 - MC cross section
 - PDF
 - Modeling of b-tagging efficiency and fake rates
 - Modeling of the signal and background

- **For the data-driven techniques:**
 - fakes: estimated using variations on control region selection for the calculation of probability that a real or fake loose lepton passes the tight criteria
 - charge flip (for SS leptons): estimated by differences between the 3 methods used (tag-and-probe, direct extraction, likelihood)
$Q\bar{Q} \rightarrow WqW\bar{q}$ in 2 leptons channel (e or μ)

- Events $Q\bar{Q} \rightarrow W^+qW^-\bar{q}$
 $q = d, s, b$ for up-type Q
 $@ 1$ fb$^{-1}$
 (arXiv: 1202.3389,

- **Analysis:**
 - Mass reconstruction of heavy boosted Q quark candidates is performed ($m_{\text{collinear}}$)
 - A cut H_T, E_T^{miss} and $m_{\text{collinear}}$ dependent on the assumed signal mass is applied

- **Results:** a binned maximum-likelihood ratio technique is used to fit distributions of $m_{\text{collinear}}$ to the observed data

Graphs:

- **ATLAS**
 - Events / 40 GeV
 - $m_{\text{collinear}}$ [GeV]
 - $L = 1.04$ fb$^{-1}$
 - $m(Q) > 335$ GeV (exp)
 - $m(Q) > 350$ GeV (obs)

- **$\sigma \times BR(Q\bar{Q} \rightarrow W^+qW^-\bar{q})$ [pb]**
 - m_Q [GeV]
 - 95% CL @ 4.7 fb$^{-1}$
 - $m(Q) > 335$ GeV (exp)
 - $m(Q) > 350$ GeV (obs)

08/10/2012

Lea Gauthier, (CEA-Saclay / Montréal University)
06/16
$t't' \rightarrow WbWb$ in single lepton + jets channel (e or μ)

- Events $t't' \rightarrow WbWb$ @ 4.7 fb$^{-1}$ (soon on arXiv)

- Only the range $m(t') < m(W) + m(b')$ is considered
 - events with exactly 3 jets or with 4 or more jets are analyzed separately

- Signal generated with Pythia and normalized to the approximate NNLO theoretical cross sections

- Event selection:
 - exactly 1 lepton
 - 2 definitions of W_{had}: $W_{\text{had}}^{\text{type I}}$ (single jet with $p_T > 250$ GeV and mass in [60-110] GeV) and $W_{\text{had}}^{\text{type II}}$ (dijet with $p_T > 150$ GeV, $\Delta R(j, j) < 0.8$ and M_{ij} in [60-110] GeV)
 - ≥ 3 jets and ≥ 1 $W_{\text{had}}^{\text{type I}}$ candidates or ≥ 4 jets and ≥ 1 $W_{\text{had}}^{\text{type II}}$ candidates
 - H_T (Σlep, E_T^{miss}, 4(3) jets) > 750 GeV
 - P_T (leading b-jet) > 160 GeV, P_T (subleading b-jet) > 60 GeV,
 - $\Delta R(l, \nu) < 1.4$, $\min(\Delta R(W_{\text{had}}, b_{1,2})) > 1.4$, $\min(\Delta R(l, b_{1,2})) > 1.4$

- t' mass reconstruction (built from W_{had}):
 - m_{reco} built from W_{had} and one of the two b-jet candidates
 - reconstruction of $W_{\text{lep}} \rightarrow$ two solutions and two possible ways to pair the b-jet candidates
 - the solution yielding the smallest $|\Delta M(t', \bar{t}')|$ is chosen
Results:

- m_{reco} is analyzed using a log-likelihood ratio as test-statistic
- 95% C.L. upper limits on the $t' \bar{t}'$ production cross section are derived using the CLs method
- the uncertainties are taken into account

Previous limit @ 1 fb$^{-1}$: $m(t') > 394$ GeV (expected) @ 1 fb$^{-1}$ (arXiv: 1202.3076, Phys.Rev.Lett. 108 (2012) 261802)
$m(t') > 404$ GeV (observed)
Vector Like Quark interpretation of $t'\bar{t}' \rightarrow Wb\bar{W}b$

VLQ interpretation of $t' @ 4.7 \text{ fb}^{-1}$

→ soon on arXiv

the limit is interpreted in vector like quark model where $t' \rightarrow Wb$
$t' \rightarrow Zt$
$t' \rightarrow Ht$

the sum of the 3 BR is 1

$\sqrt{s} = 7 \text{ TeV}, \int L \, dt = 4.7 \text{ fb}^{-1}$
Study:
- \(b' \): pair production only (limit on cross-section)
- \(T_{5/3} \): pair + single production (limit on cross-section depending on the coupling \(T_{5/3} tW \))

Signal generated with Pythia and normalized to NNLO theoretical cross sections

Event selection:
- \(\geq 2 \) leptons (pair with highest \(P_T \) if multiple)
- at least 2 jets and at least 1 b-tagged
- \(E_T^{\text{miss}} > 40 \) GeV
- \(M_{ll} > 15 \) GeV and \(|M_{ll} - M_Z| > 10 \) GeV (ee, \(\mu \mu \) channels)
- \(H_T \) (lep, jets) > 550 GeV

Results:
- A cut and count method is used
- The CLs method is used to set 95% confidence level cross section upper limits for the pair production of fourth generation quarks

\(b'b' / T_{5/3} T_{5/3} \to WtWt \) in same sign leptons channel (e or \(\mu \))

\(\text{Events } b'b' / T_{5/3} T_{5/3} \to WtWt \) \(@ 4.7 \) fb\(^{-1} \) for SS lepton channel

(ATALS-COM-CONF-2012-163)
\(\bar{b}'\bar{b}' / T_{5/3}^3 \bar{T}_{5/3} \rightarrow WtWt \) in same sign leptons channel (e or \(\mu \))

Other results:
- study done @ 1 fb\(^{-1}\) for single lepton channel \((arXiv: 1202.6540, Phys.Rev.Lett. 109 (2012) 032001)\)
- limit: \(m(b') > 480 \text{ GeV} \)

95% CL @ 4.7 fb\(^{-1}\)
- pair production: \(m(b'/T_{5/3}) > 670 \text{ GeV} \)
- pair+single coupling = 1: \(m(T_{5/3}) > 680 \text{ GeV} \)
- pair+single coupling = 3: \(m(T_{5/3}) > 700 \text{ GeV} \)
$b'b' \rightarrow Zb+X$ in single lepton and dilepton channel (e or μ)

- Events $b'b' \rightarrow Zb+X$ @ 1.98 fb$^{-1}$ where $Z \rightarrow ee$ (arXiv : 1204.1265, Phys.Rev.Lett. 109 (2012) 071801)

- Signal generated with MadGraph + Pythia and normalized to NNLO theoretical cross sections

- At least one b' decay to $b' \rightarrow Z + b$

- The case of a vector-like singlet (VLS) mixing solely with the third SM generation is also considered (a SM Higgs of mass 125 GeV is assumed)

- Event selection:
 - at least 2 OS leptons
 - $|M_{ee} - M_Z| < 15$ GeV
 - at least 1 b-tagged jet

- Analysis:
 - the b' candidate is formed from the $e^+ e^-$ pair and the highest p_T b-jet
 - the mass of the b' candidate, $m(Zb)$, is the discriminant variable
 - cut: $p_T(Zb) > 150$ GeV applied to increase the signal sensitivity
The limit is computed using a binned Poisson likelihood ratio test of the $m(Z_b)$ distribution for different $m(b')$ hypothesis.

The cross section limit is evaluated using the CLs modified frequentist approach.

$m(b') > 400$ GeV

vector-like singlet b' mixing solely with the third SM generation: $m(b')$ for VLS > 358 GeV
Single Production of VLQ Coupling to Light Generations

- Events @ 4.64 fb⁻¹ with a \(W \rightarrow l\nu \) or \(Z \rightarrow l\nu \) boson produced in association with at least 2 high \(P_T \) jets (ATLAS-CONF-2012-137)

- Signal generated with MadGraph + Pythia

<table>
<thead>
<tr>
<th>charge</th>
<th>2/3</th>
<th>-1/3</th>
<th>5/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma(400 \text{ GeV}).BR) [pb]</td>
<td>0.849</td>
<td>5.47</td>
<td>7.78</td>
</tr>
<tr>
<td>(\sigma(2 \text{ TeV}).BR) [pb]</td>
<td>0.305</td>
<td>1.32</td>
<td>3.64</td>
</tr>
</tbody>
</table>

- Event selection:
 - analysis divided into 4 channels: CC and NC, each with either e or \(\mu \) in the final state
 - the final event selection cuts are optimized independently for the CC and NC channels
 - CC channel: exactly 1 lepton and \(E_T^{\text{miss}} > 50 \text{ GeV} \rightarrow W \) reconstruction \([m_T(W) > 40 \text{ GeV}, |\eta(W)| < 2.5\] \(N_{\text{jets}} \geq 2 \) and \(p_T(\text{leading jet}) > 60 \text{ GeV} \)
 - cut optimization on: \(|\Delta \eta(W,\text{jet leading})|, |\Delta \eta(\text{jet leading,jet associated})|, |\Delta \Phi(W,\text{jet leading})|, |\Delta \Phi(1,E_T^{\text{miss}})| \)
 - NC channel: 2 OS and same-flavour leptons \((66 \text{ GeV} < M_{ll} < 116 \text{ GeV})\)
 - \(N_{\text{jets}} \geq 2 \)
 - cut optimization on: \(|\Delta \eta(l,l)|, |\Delta \eta(Z,\text{jet})|, |\Delta \eta(\text{jet leading,jet associated})|, |\Delta \Phi(l,l)|, |\Delta \Phi(Z,\text{jet leading})| \)
Background:
- estimated in data by fitting the reconstructed VLQ mass
- as a cross-check, data are compared to the simulated background model

Results are consistent with a background-only hypothesis:
- limits are set on the production cross section and coupling (Bayesian limits)
- stronger CC limits are obtained by requiring a negatively charged lepton in the final state
 (background $(W^- + \text{jets}) = 1/3 \times \text{background (}W^+ + \text{jets})$)

95% CL @ 4.64 fb$^{-1}$ with $\tilde{\kappa}_{qQ} = 1$
- $m(Q) > 1.12 \text{ TeV} \quad \text{charge} = 2/3$
- $m(Q) > 1.08 \text{ TeV} \quad \text{charge} = -1/3$
- $m(Q) > 1.42 \text{ TeV} \quad \text{charge} = 5/3$
The fourth generation quark model has been studied and the following results were obtained @ 95% CL:

- $m(Q) > 350$ GeV for up and down type Q
- $m(t') > 656$ GeV for $t' \rightarrow W+b$
- $m(b') > 670$ GeV for $b' \rightarrow W+t$

This model is now disfavored by $m_H \sim 126$ GeV.
The fourth generation quark model has been studied and the following results were obtained @ 95% CL:
- \(m(Q) > 350 \text{ GeV} \) for up and down type \(Q \)
- \(m(t') > 656 \text{ GeV} \) for \(t' \rightarrow W+b \)
- \(m(b') > 670 \text{ GeV} \) for \(b' \rightarrow W+t \)

This model is now disfavored by \(m_H \approx 126 \text{ GeV} \)

The Vector Like Model has also been studied
- a \textbf{VLQ interpretation of} \(t' @ 4.7 \text{ fb}^{-1} \) has been shown
- a \textbf{vector-like singlet} \(b' \) (with \(b' \rightarrow Z+b \)) \textbf{mixing solely with the third SM generation} has been studied
- limits on \textbf{VLQs with charge 5/3} has been shown for different coupling value \(\lambda(T_{5/3} tW) \)
- the \textbf{single production of VLQs coupling to light generations} has been studied for VLQs with charges \(-1/3, 2/3 \) and \(5/3 \) and limits on the \textbf{production cross section and coupling} have been shown

This model \textbf{survives} \(m_H \approx 126 \text{ GeV} \)
The fourth generation quark model has been studied and the following results were obtained @ 95% CL:
- $m(Q) > 350$ GeV for up and down type Q
- $m(t') > 656$ GeV for $t' \rightarrow W+b$
- $m(b') > 670$ GeV for $b' \rightarrow W+t$

This model is now disfavored by $m_H \sim 126$ GeV

The Vector Like Model has also been studied
- a VLQ interpretation of $t' @ 4.7$ fb$^{-1}$ has been shown
- a vector-like singlet b' (with $b' \rightarrow Z+b$) mixing solely with the third SM generation has been studied
- limits on VLQs with charge $5/3$ has been shown for different coupling value $\lambda(T_{5/3} tW)$
- the single production of VLQs coupling to light generations has been studied for VLQs with charges = $-1/3$, $2/3$ and $5/3$ and limits on the production cross section and coupling have been shown

This model survives $m_H \sim 126$ GeV

We will continue to set limits on 4th generation at 8 TeV
The limits on the Vector Like Quark Model will be improved with data analysis at 8 TeV