High-\(p_T\) processes measured with ALICE

Jacek Otwinowski (GSI)
on behalf of the ALICE Collaboration

Xth Quark Confinement and the Hadron Spectrum
8-12 October 2012, Munich, Germany
Content

• Motivation
• Nuclear modification factor
• Towards full jet reconstruction in Pb-Pb collisions
• Summary
Motivation

- The production of hadrons at high p_T is suppressed in AA collisions compared to superposition of nucleus-nucleus collisions (RHIC / LHC)
- Suppression is a consequence of energy loss of partons traversing the Quark-Gluon-Plasma (QGP)
- Understanding the suppression goes towards understanding the medium properties of the QGP
- Energy loss in the QGP (high p_T):
 - Medium density and size: dN/dp_T, R_{AA}, v_2
 - Color charge (Casimir factor): $\Delta E_q < \Delta E_g$
 - Parton mass (dead cone effect): $\Delta E_b < \Delta E_c < \Delta E_{u,d,s}$
ALICE – A Large Ion Collider Experiment

ALICE has excellent PID capabilities. Particle identification possible in the p_T range 0.1-50 GeV/c.
Pb-Pb runs: Nov. 2010 and 2011

Pb-Pb central (0-5%)
\[dN_{\text{ch}} / d\eta = 1584\pm74 \]
ALICE, PRL 105, 252301 (2010)

Pb-Pb event in ALICE TPC

Pb+Pb @ \sqrt{s} = 2.76 \text{ ATeV}
2010-11-08 11:30:46
Fill : 1482
Run : 137124
Event : 0x00000000D3BBE693
\[R_{AA} = \frac{1}{\langle T_{AA} \rangle} \frac{dN_{AA}/dp_T}{d\sigma_{pp}/dp_T} \]

- Suppression pattern depends on collision centrality
- Largest suppression in the central collisions (factor 7 at \(p_T \sim 7 \text{ GeV}/c \))
R_{AA} vs. collision centrality

Charged particles

- Strongest suppression vs. collisions centrality for $5 < p_T < 7$ GeV/c
- Factor ~ 1.2 stronger suppression vs. $<N_{\text{part}}>$ compared to RHIC (at all p_T)
- Similar suppression vs. $dN_{\text{ch}}/d\eta$ compared to RHIC

- 30 $< p_T < 50$ GeV/c
- 20 $< p_T < 30$ GeV/c
- 15 $< p_T < 20$ GeV/c
- 5 $< p_T < 7$ GeV/c
- PHENIX 5 $< p_T < 7$ GeV/c

\[\langle N_{\text{part}} \rangle \]

\[dN_{\text{ch}}/d\eta \]

\[2.76 \text{ TeV} \]

\[\text{ALICE, Pb-Pb, } |y| < 0.8 \]

\[\text{pp syst. uncertainty} \]

\[< 50 \text{ GeV/c} \]

\[30 < p_T < 50 \text{ GeV/c} \]

\[20 < p_T < 30 \text{ GeV/c} \]

\[15 < p_T < 20 \text{ GeV/c} \]

\[5 < p_T < 7 \text{ GeV/c} \]

\[\text{PHENIX 5} < p_T < 7 \text{ GeV/c} \]
R_{AA} comparison - central collisions

Charged particles

- Selected models available before preliminary data
- A variety of energy loss formalisms are used (radiative, elastic, ...)
- An increase of R_{AA} vs. p_T is seen for all the models
- Agreement with CMS

Radiative:

Elastic (T.R.):
- Phys. Rev. C 84 (2011) 014906

TOWARDS JETS WITH IDENTIFIED PARTICLES

Light flavor (u,d,s)
R_{AA} for charged pions

charged particle spectra arXiv:1208.2711

\begin{itemize}
 \item \(2 < p_T < 7\) GeV/c: pion \(R_{AA}\) < charged particle \(R_{AA}\) (centrality dependence)
 \item \(p_T > 7\) GeV/c: pion \(R_{AA}\) = charged particle \(R_{AA}\)
\end{itemize}
R_{AA} for charged kaons

charged particle spectra arXiv:1208.2711

- Kaon R_{AA} = charged particle R_{AA} ($p_T > 3$ GeV/c)
R_{AA} for (anti-)protons

charged particle spectra arXiv:1208.2711

- $3 < p_T < 7$ GeV/c: proton $R_{AA} >$ charged particle R_{AA} (centrality dependence)
- $p_T > 7$ TeV: proton $R_{AA} =$ charged particle R_{AA}
Central collisions (0-5%):
- $3 < p_T < 7$ GeV/c: proton $R_{AA} >$ pion or kaon R_{AA}
- $p_T > 7$ TeV: pion $R_{AA} =$ kaon $R_{AA} =$ proton R_{AA}

Peripheral collisions (60-80%):
- Pion $R_{AA} =$ kaon $R_{AA} =$ proton R_{AA}

- Different particle spectra in Pb-Pb at $p_T < 7$ GeV/c
- High-p_T parton fragmentation seems not to be affected by the medium
Towards Jets with Identified Particles

Heavy flavor (c,b)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>CT (~ μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c, b \rightarrow e$</td>
<td></td>
</tr>
<tr>
<td>$b \rightarrow e$</td>
<td>$500 \mu m$</td>
</tr>
<tr>
<td>$c, b \rightarrow \mu$</td>
<td></td>
</tr>
<tr>
<td>$D^0 \rightarrow K \pi$</td>
<td>$122.9 \mu m$</td>
</tr>
<tr>
<td>$D^+ \rightarrow K \pi \pi$</td>
<td>$311.8 \mu m$</td>
</tr>
<tr>
<td>$D^{*+} \rightarrow D^0 \pi$</td>
<td></td>
</tr>
<tr>
<td>$D_s^{+} \rightarrow K K \pi$</td>
<td>$149.9 \mu m$</td>
</tr>
</tbody>
</table>
Heavy flavor R_{AA} vs. collision centrality

- Similar suppression pattern of D mesons and heavy flavor muons
- Beauty R_{AA}: suppression of non-prompt J/ψ consistent with heavy flavor muons
- Light flavor $R_{AA} <$ heavy flavor R_{AA}?
 - Not conclusive from these data...

ALICE, arXiv:1203.2160
ALICE, PRL 109(2012)112301
CMS, JHEP 05 (2012)063
Heavy flavor R_{AA} vs. p_T in central collisions

- Similar suppression of heavy flavor in central Pb-Pb collisions
- D meson R_{AA} consistent with R_{AA} of heavy flavor decay e/μ taking into account $p_T^e \sim 0.5p_T^{HF}$ at high-p_T
- D meson $R_{AA} = \text{pion } R_{AA} = \text{charged particle } R_{AA}$
R\(_{AA}\) vs. reaction plane - D mesons

Path length dependence of the heavy quark energy loss.

\[
R_{AA}(\phi) = R_{AA}(1+2v^2 \cos(2\phi))
\]

- \(\phi \sim 0\) (in-plane)
- \(\phi \sim \pi/2\) (out-of-plane)

- \(R_{AA}\) in-plane > \(R_{AA}\) out-of-plane (centrality 30-50%)
- contribution from elliptic flow at low \(p_T\)?
- path length dependence of energy loss at high \(p_T\)?
TOWARDS FULL JET RECONSTRUCTION IN Pb-Pb COLLISIONS

Jet in ALICE EMCAL (2011)
Jet measurement with ALICE

- Full jet reconstruction should recover most of the radiated energy
- First step: Jet R_{AA}
 - $R_{AA} \sim 1 \rightarrow$ energy is recovered
 - $R_{AA} < 1 \rightarrow$ out-of-cone radiation
- Next steps: study transverse and longitudinal distribution of fragments
- ALICE case
 - In 2010: No Pb-Pb data with full EMCAL \rightarrow only charged jet measurement
 - In 2011: EMCAL installation completed: charged and neutral jets
Charged jet spectra in Pb-Pb (0-10%)

Experimental challenge – huge background from underlying event(s)

\[p_{T,jet}^{ch} = p_{T,jet}^{rec} - \rho \times A_{jet} \pm \sigma \times \sqrt{A_{jet}} \]

Corrected charged jet spectra

- Event-by-event background \((\rho \times A_{jet}) \) estimated using k\(_T\) algorithm
- Background fluctuations \((\sigma \times \sqrt{A_{jet}}) \) are quantified using random cones and embedding of high p\(_T\) probes (*JHEP 1203 (2012) 53*), and corrected for via unfolding

- Similar p\(_T\) spectra for inclusive jets and jets with the leading track selection
 - Unfolding deals correctly with background at low p\(_T\)
 - Rather weak softening of the fragmentation in Pb-Pb
Jet quenching – charged jets in Pb-Pb

JEWEL (Zapp et al.) arXiv:1111.6838

- Strong charged jet suppression in central collisions
 - $R_{AA} \sim 0.2\text{-}0.4$ (with Pythia pp reference)
 - $R_{CP} \sim 0.3\text{-}0.5$ (0-10% / 50-80%) – similar for inclusive jets and jets with selected leading track
Jet structure

- Pythia reproduces fragmentation well in pp ($\sigma(R=0.2)/\sigma(R=0.4)$)
- $R=0.2$ / $R=0.3$ in central and peripheral Pb-Pb collisions consistent with vacuum jets
Summary

• Strong suppression of light and heavy flavor production at high p_T in central Pb-Pb collisions
• Different suppression for protons compared to pions and kaons at $p_T < 7$ GeV/c (different particle spectra in Pb-Pb)
• Similar suppression of pions, kaons and protons at high p_T (parton fragmentation seems not to be modified by the medium)
• Light flavor $R_{AA} = D$ meson R_{AA} at high p_T in central Pb-Pb collisions
• Charged jets in Pb-Pb
 – Strong suppression in central collisions (0-10%)
 – $R=0.2 / R=0.3$ in central and peripheral collisions consistent with vacuum jets
 – Rather weak softening of the fragmentation in Pb-Pb collisions
• Neutral + charged jet analysis in Pb-Pb is finalizing
BACKUP
Nuclear Modification Factor – R_{AA}

$$R_{AA} = \frac{1}{\langle T_{AA} \rangle} \frac{dN_{AA}/dp_T}{d\sigma_{pp}/dp_T}$$

- R_{AA} quantify in medium effects
- $\langle T_{AA} \rangle$ - nuclear thickness function from Glauber model of AA collisions
- At LHC, first R_{AA} published by ALICE

Today focus on intermediate and high p_T with extended p_T reach.

\(p_T \) spectra in Pb-Pb

Charged particles

- \(p_T = 0.15-50 \) GeV/c
- \(p_T \) spectral shape changes with collision centrality
- \(p_T \) spectra in central Pb-Pb dramatically different from pp reference
High-p_T particle identification: TPC dE/dx

\[\frac{d^2 N_i}{d\eta dp_T} = \frac{d^2 N_{ch}}{d\eta dp_T} \times \frac{\epsilon_i}{\epsilon_{ch}} \times \frac{N_i}{N_{ch}} \times \frac{\eta}{\sinh^{-1}\left(\frac{p_T \sinh(\eta)}{\sqrt{p_T^2 + m_i^2}}\right)} \]

$i = \pi, K, p$

arXiv:1208.2711v1 [hep-ex]
p_T spectra for $\pi/K/p$

- High-p_T particle identification using TPC dE/dx: π ($p_T > 2$ GeV/c) and K, p ($p_T > 3$ GeV/c)
- Possible p_T reach up to 50 GeV/c
proton / pion ratio in pp and Pb-Pb
R_{AA} - heavy flavor decay electrons

Suppression around factor of 1.5-3 for $p_T > 3$ GeV/c

ATLAS, PLB 707 (2012) 438
R_{AA} - heavy flavor decay muons

- pp reference measured at the same collision energy
- Suppression in central collisions around factor of 2-4 for $p_T > 4$ GeV/c
- Weaker suppression ($R_{AA} \sim 0.7$) in semi-peripheral (40-80%) collisions
• pp reference (7 TeV pp scaled for $p_T < 20$ GeV/c, extrapolation for $p_T > 20$ GeV/c)
• Suppression in central collisions (0-7.5%) around factor of 5 at $p_T = 10$ GeV/c
Proton / pion enhancement – bulk matter

The enhancement seems to be a bulk effect (Misha Veldhoen, arXiv:1207.7195).

Particle production in jets is not affected by medium.
JETLIKE AZIMUTHAL DIHADRON CORRELATION

Jet quenching measurement via leading hadron azimuthal correlations
Jet quenching measurement via leading hadron azimuthal correlation

Intermediate pT di-hadrons: Strong modification of the recoil-jet indicates **substantial partonic interaction within the medium** \rightarrow quenching

Near side ($\Delta\phi \sim 0$): selecting jets with little interaction

Quantify jet suppression:
- Compare yields in Pb-Pb and pp: I_{AA}
- Compare yields in Pb-Pb central and peripheral: I_{CP}

Strong suppression
$I_{AA} = \text{yield in Pb-Pb} / \text{yield in pp}$

ALICE, PRL 108, 092301 (2012)

- Trigger particles: $8 < p_{T,\text{trig}} < 15 \text{ GeV/c}$
- Associated particles: $p_{T,\text{assoc}} < p_{T,\text{trig}}$
- Non-jet background subtraction: flat pedestal, v_2 flow, η-gap

- Near side: enhanced particle yield in central collisions ($I_{AA} \sim 1.2$)
- Away side: strong suppression in central collision ($I_{AA} \sim 0.6$)
- No yield modification in peripheral collisions
- Small contribution from elliptic flow v_2 (mostly at low-p_T)
$I_{\text{CP}} = \text{yield in central Pb-Pb} / \text{yield in peripheral Pb-Pb}$

- Near side: enhancement $I_{\text{CP}} \sim 1.2$ consistent with $I_{\text{AA}} (0-5\%)$
- Away side: strong suppression ($I_{\text{CP}} \sim 0.6$)
Jet reconstruction in Pb-Pb collisions

Experimental challenge – huge background from underlying event(s)

\[p_{T,jet}^{ch} = p_{T, jet}^{rec} - \rho \times A_{jet} \pm \sigma \times \sqrt{A_{jet}} \]

- \(p_{T, jet}^{rec} \) – from JetFinder (anti-k\(_T \) algorithm)
 - track \(p_T > 150 \) MeV/c
- \(\rho \) = median (\(p_{T,jet}/\text{area} \)) determined event-by-event (k\(_T \) algorithm)
- \(\sigma \) – background fluctuations due to:
 - statistics (Poisson limit)
 - flow (global dynamics)
 - mini-jets (local dynamics)
 - others?...
Background fluctuations

Experimental challenge – huge background from underlying event(s)

- Background fluctuations estimated using
 - Random cones
 - High-\(p_T\) track embedding
 - Pythia jet embedding
 - Jet spectrum scaled to 20 GeV
- Good agreement between all methods

\[
\delta p_{T, jet}^{ch} = p_{T, jet}^{rec} - \rho \times A_{jet} - p_T^{embed}
\]
Inclusive jet pp cross section

Fully reconstructed jets
- Charged particles from TPC and ITS
- Gammas and neutral pions from EMCAL
- Jet energy scale shift (~20-25%)
 - Unmeasured neutrons and K^0_L
 - Tracking efficiency
 - EMCAL residual hadronic background
 - E-by-e fluctuations

Good agreement between measurement and NLO calculations and Pythia8