Chiral Magnetic Effect and Holography

Ingo Kirsch
DESY Hamburg, Germany

Based on work with
T. Kalaydzhyan, I. Gahramanov

Kalaydzhyan, I.K., Phys. Rev. Lett. 106 (2011) 211601,
Gahramanov, Kalaydzhyan, I.K., PRD 85 (2012) 126013

Xth Quark Confinement and the Hadron Spectrum,
TUM Department of Physics, 7-12 October 2012
Motivation: Observed charge asymmetry in HICs

Heavy-ion collision:

Excess of positive charge (above Ψ_R)

Excess of negative charge (below Ψ_R)
Chiral magnetic effect

1. In presence of a magnetic field B, momenta of the quarks align along B

2. Topological charge induces chirality

3. Positively/negatively charged quarks move up/down (charge separation!)

4. An electric current is induced along the magnetic field B

$$\vec{J} = C \mu_5 \vec{B}$$

CME is a candidate for explaining an observed charge asymmetry in HIC

Does the CME hold at strong coupling?

$$\Rightarrow \text{AdS/CFT}$$

CME in HICs:

$$\Delta N_5 \equiv (N_L - N_R)|_\infty - (N_L - N_R)|_{-\infty} = 2N_fQ$$

$$Q = \frac{g^2}{32\pi^2} \int d^4xF^{\alpha\nu}_\mu \tilde{F}^{\mu\nu}_\alpha$$

[in fig.: $[0-4] - [2-2] = 2 \cdot 2 \cdot (-1)$]
Overview

Outline:

I. CME in hydrodynamics
II. Fluid/gravity model of the CME
III. CME in anisotropic fluids
 \((v_2\text{-dependence})\)

Conclusions
Part I: CME in hydrodynamics
Hydrodynamics vs. fluid/gravity model

Hydrodynamics

- Multiple-charge model
 - $U(1)^n$ plasma with triangle anomalies
 - Son & Surowka (2009), Neiman & Oz (2010)

 $n=2$

- Two-charge model
 - $U(1)_V \times U(1)_A$ plasma

 recover CME (and other effects)

Fluid/gravity model

- Holographic n-charge model
 - 5D AdS black hole geometry with n U(1) charges

- Holographic two-charge model
 - n-charge model reduced to two charges

 recover holographic CME, etc.
Hydrodynamical model with n anomalous U(1) charges

$U(1)^n$ plasma with triangle anomalies:

$$\partial_\mu T^{\mu\nu} = F^{a\nu\lambda} j^a_\lambda \quad (a = 1, 2, \ldots, n)$$

$$\partial_\mu j^a_\mu = C^{abc} E^b \cdot B^c$$

stress-energy tensor $T^{\mu\nu}$ and U(1) currents $j^{a\mu}$:

$$T^{\mu\nu} = (\epsilon + P) u^\mu u^\nu + Pg^{\mu\nu} + \ldots$$

$$j^{a\mu} = \rho^a u^\mu + \xi^a_\omega \omega^\mu + \xi^{ab}_B B^{b\mu} + \ldots$$

“New” transport coefficients (not listed in Landau-Lifshitz)

- vortical conductivities ξ^a_ω
 Erdmenger, Haack, Kaminski, Yarom (2008)

- magnetic conductivities ξ^{ab}_B
 Son & Surowka (2009)

first found in a holographic context (AdS/CFT)

Son & Surowka (2009)

E- & B-fields, vorticity:

$$E^{a\mu} = F^{a\mu\nu} u_\nu$$

$$B^{a\mu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} u_\nu F^{a}_{\alpha\beta}$$

$$\omega^\mu = \frac{1}{2} \epsilon^{\mu\nu\lambda\rho} u_\nu \partial_\lambda u_\rho$$
First-order transport coefficients

\[j^{a\mu} = \rho^a u^\mu + \xi^a_\omega \omega^\mu + \xi^a_{B} B^{b\mu} + \ldots \]

vortical and magn. conductivities:

\[\xi^a_\omega = C^{abc} \mu^b \mu^c - \frac{2}{3} \rho^a C^{bcd} \frac{\mu^b \mu^c \mu^d}{\epsilon + P} + \mathcal{O}(T^2) \]

\[\xi^{ab}_B = C^{abc} \mu^c - \frac{1}{2} \rho^a C^{bcd} \frac{\mu^c \mu^d}{\epsilon + P} + \mathcal{O}(T^2) \]

chemical potentials

Conductivities are non-zero only in fluids with triangle anomalies!

Son & Surowka (2009), Neiman & Oz (2010)
Two charge case (n=2): $U(1)_A \times U(1)_V$

$U(1)_A$: provides chemical potential μ_5 (chirality)
$U(1)_V$: measures the electric current

Hydrodynamical equations:

\[
\partial_\mu T^{\mu\nu} = F^{V\nu\lambda} j_\lambda \\
\partial_\mu j_5^{\mu} = -\frac{C}{4} F^{\nu\mu} \tilde{F}^{\nu\mu\nu} \\
\partial_\mu j^{\mu} = 0
\]

axial gauge field switched off! ($A^A_\mu = 0$)

Constitutive equations:

\[
j^{\mu} = \rho u^{\mu} + \kappa_\omega \omega^{\mu} + \kappa_B B^{\mu} \\
j_5^{\mu} = \rho_5 u^{\mu} + \xi_\omega \omega^{\mu} + \xi_B B^{\mu}
\]

CME coefficient

CME coefficient

Identifications:

\[
A^A_\mu = A^1_\mu, \quad A^V_\mu = A^2_\mu, \\
j_5^{\mu} = j^{1\mu}, \quad j^{\mu} = j^{2\mu} \\
\mu_5 = \mu^1, \quad \mu = \mu^2, \\
\rho_5 = \rho^1, \quad \rho = \rho^2, \\
\kappa_\omega = \xi_\omega^2, \quad \kappa_B = \xi_B^{22}, \\
\xi_\omega = \xi_\omega^1, \quad \xi_B = \xi_B^{12}
\]

C-parity allows for:

\[
C^{111} = C/3 \quad (AAA) \\
C^{122} = C^{221} = C^{212} = C/3 \quad (AVV) \\
C^{121} = C^{211} = C^{112} = 0 \quad (VAA) \\
C^{222} = 0 \quad (VVV)
\]
(Chiral) magnetic and vortical effects

constitutive equations:

\[j^\mu = \rho u^\mu + \kappa_\omega \omega^\mu + \kappa_B B^\mu \]
\[j_5^\mu = \rho_5 u^\mu + \xi_\omega \omega^\mu + \xi_B B^\mu \]

transport coefficients (conductivities):

\begin{align*}
\text{CVE} & : \quad \kappa_\omega / \mu = 2 C \mu_5 \left(1 - \frac{\mu \rho}{\epsilon + P} \left[1 + \frac{\mu_5^2}{3 \mu^2} \right] \right) , \quad \kappa_B = C \mu_5 \left(1 - \frac{\mu \rho}{\epsilon + P} \right) \\
\text{QVE} & : \quad \xi_\omega / \mu = C \mu \left(1 - 2 \frac{\mu_5 \rho_5}{\epsilon + P} \left[1 + \frac{\mu_5^2}{3 \mu^2} \right] \right) , \quad \xi_B = C \mu \left(1 - \frac{\mu_5 \rho_5}{\epsilon + P} \right)
\end{align*}

C=chiral since CVE, CME prop. to chiral chemical potential \(\mu_5 \)
Q=quark since QVE, QME prop. to quark chemical potential \(\mu \)
(QME also called chiral separation effect (CSE))

\(\mu \omega \) creates an effective magnetic field *Kharzeev and Son (2010)*
Part II: Fluid/gravity model of the CME
Kalaydzhyan & I.K., PRL 106 (2011) 211601
Hydrodynamics vs. fluid/gravity model

Hydrodynamics

Multiple-charge model
$U(1)^n$ plasma with triangle anomalies
Son & Surowka (2009)
Neiman & Oz (2010)

$n=2$

Two-charge model
$U(1)_V \times U(1)_A$ plasma
recover CME (and other effects)

Fluid/gravity model

Holographic n-charge model
5D AdS black hole geometry with
n U(1) charges

$n=2$

Holographic two-charge model
n-charge model reduced to two charges
recover holographic CME, etc.
Gravity: Holographic computation

Strategy: quark-gluon plasma is strongly-coupled \Rightarrow use AdS/CFT to compute the transport coefficients relevant for the anomalous effects (CME, etc.)

- find a 5d charged AdS black hole solution with several $U(1)$ charges

\[U(1)_V \times U(1)_A \]

- duality:

\[
(m, q_a) \longleftrightarrow (T, \mu_a)
\]

mass m
U(1) charges q_a

\[T \sim r_+ \quad \text{Hawking temperature} \]
\[\mu^a \equiv A^a_0(r_+) - A^a_0(\infty) \]

- use fluid-gravity methods to holographically compute the transport coefficients $\kappa_\omega, \kappa_B, \xi_\omega, \xi_B$ (i.e. CME and other effects)
AdS black hole solution with multiple U(1) charges

Five-dimensional $U(1)^n$ Einstein-Maxwell theory with cosmological term:

$$S = \frac{1}{16\pi G_5} \int d^5x \sqrt{-g} \left[R + 12 - F_{MN}^a F^{aMN} + \frac{S_{abc}}{6\sqrt{-g}} \varepsilon^{PKLMN} A_P^a F_{KL}^b F_{MN}^c \right]$$

Fields:
- metric g_{MN} ($M, N = 0, ..., 4$)
- n U(1) gauge fields A_M^a
 ($a = 1, ..., n$)
- cosmological constant $\Lambda = -6$

The information of the anomalies is encoded in the Chern-Simons coefficients:

$$S_{abc} = 4\pi G_5 C_{abc}$$

Son & Surowka (2009)
Boosted AdS black hole solution

5d AdS black hole solution (0th order solution):

\[ds^2 = -f(r)u_\mu u_\nu dx^\mu dx^\nu - 2u_\mu dx^\mu dr + r^2 (\eta_{\mu\nu} + u_\mu u_\nu) dx^\mu dx^\nu \]

\[A^a = (A^a_0(r) u_\mu + A^a_\mu) dx^\mu \]

with

\[f(r) = r^2 - \frac{m}{r^2} + \sum_a \frac{(q_a)^2}{r^4} \]

\[A^a_0(r) = -\frac{\sqrt{3}q^a}{2r^2} \]

\(u_\mu \) = four-velocity of the fluid
First-order transport coefficients

We use the standard procedure of Bhattacharyya et al. (2008) to holographically compute the transport coefficients ξ^a_ω (Torabian & Yee (2009) for $n=3$) and ξ^{ab}_B:

1. Vary 4-velocity and background fields (up to first order):

 \[
 u_\mu = (-1, x^\nu \partial_\nu u_i), \quad A^a_\mu = (0, x^\nu \partial_\nu A^a_i)
 \]

 The boosted black-brane solution (0^{th} order sol.) is no longer an exact solution, but receives higher-order corrections.

 Ansatz for first-order corrections:

 \[
 ds^2 = (-f(r) + \tilde{g}_{tt}) dt^2 + 2 (1 + \tilde{g}_{tr}) dt dr + r^2 (dx^i)^2 + \tilde{g}_{ij} dx^i dx^j - 2 x^\nu \partial_\nu u_i dr dx^i \\
 + 2 \left((f(r) - r^2) x^\nu \partial_\nu u_i + \tilde{g}_{ti} \right) dt dx^i,
 \]

 \[
 A^a = \left(-A^a_0(r) + \tilde{A}_t^a\right) dt + \left(A^a_0(r)x^\nu \partial_\nu u_i + x^\nu \partial_\nu A^a_i + \tilde{A}_i^a\right) dx^i
 \]

 Need to determine first order corrections $\tilde{g}_{tt}, \tilde{g}_{tr}, etc.$
First-order transport coefficients (cont.)

2. Solve equations of motion (system of Einstein-Maxwell equations) and find the first-order corrections to the metric and gauge fields:

\[\bar{g}_{\tau r} = g_{\tau t} = \bar{A}_i^a = 0 \]
\[\bar{g}_{\tau i}(r) = f(r) \int_{r_+}^{r} dr' \frac{1}{r'(f(r'))^2} \left(\int_{r_+}^{r'} dr'' I(r'') - r'_+ f'(r_+) C_i \right) \]
\[\bar{A}_i^a(r) = \int_{r_+}^{r} dr' \frac{1}{r' f(r')} [Q_i^a(r') - Q_i^a(r_H) - C_i r + A_0^a(r_+) + r'_+ \bar{g}_{\tau i}(r') A_0^a(r')] \]

(lengthy calculation, \(I(r) \), \(Q_i^a(r) \), \(C_i \) functions of \(A_0^a(r) \), \(f(r) \), \(u_i \))

3. Read off energy-momentum tensor and \(\text{U}(1) \) currents from the near-boundary expansion of the first-order corrected background (e.g. Fefferman-Graham coordinates):

\[T_{\mu \nu} = \frac{g^{(4)}_{\mu \nu}(x)}{4 \pi G_5} + c.t \]
\[j_\mu^a = \frac{\eta^{\mu \nu} A^{(2)}_{a \nu}(x)}{8 \pi G_5} + \hat{j}_\mu^a \]
\[ds^2 = \frac{1}{z^2} \left(g_{\mu \nu}(z, x) \, dx^\mu dx^\nu + dz^2 \right) , \]
\[g_{\mu \nu}(z, x) = \eta_{\mu \nu} + g^{(2)}_{\mu \nu}(x) \, z^2 + g^{(4)}_{\mu \nu}(x) \, z^4 + ... \]
\[A_{\mu}^a(z, x) = A_{\mu}^{a(0)}(x) + A_{\mu}^{a(2)}(x) \, z^2 + ... \]
First-order transport coefficients (cont.)

4. Determine the vortical and magnetic conductivities ξ^a_ω and ξ^{ab}_B

$$T^{\mu\nu} = (\epsilon + P)u^\mu u^\nu + Pg^{\mu\nu} + \ldots$$

$$j^{a\mu} = \rho^a u^\mu + \xi^a_\omega \omega^\mu + \xi^{ab}_B B^{b\mu} + \ldots$$

use identities (from zeroth order solution):

$$P \equiv m/16\pi G_5$$

$$\rho_a \equiv \sqrt{3} q_a/16\pi G_5$$

$$\Rightarrow \frac{\sqrt{3} q^a}{4m} = \frac{\rho^a}{\epsilon + P} \quad (\epsilon = 3P)$$

transport coefficients:

$$\xi^a_\omega = \frac{4}{16\pi G_5} \left(S^{abc} \mu^b \mu^c - \frac{2}{3} \frac{\rho^a}{\epsilon + P} S^{bcd} \mu^b \mu^c \mu^d \right)$$

$$\xi^{ab}_B = \frac{4}{16\pi G_5} \left(S^{abc} \mu^c - \frac{1}{2} \frac{\rho^a}{\epsilon + P} S^{bcd} \mu^c \mu^d \right)$$

$$\mu^a \equiv A_0^a(r_H) - A_0^a(\infty)$$

$$S_{abc} = 4\pi G_5 C_{abc} \quad \Rightarrow \quad \text{We recover the hydrodynamic result!}$$
Holographic magnetic and vortical effects

Using the same identifications as in hydrodynamics, but now for the holographically computed transport coefficients, we get

\[
\begin{align*}
\kappa_\omega &= 2C \mu \mu_5 \left(1 - \mu \frac{\sqrt{3}q}{4m} \left[1 + \frac{\mu_5^2}{3\mu^2} \right] \right), \\
\kappa_B &= C \mu_5 \left(1 - \mu \frac{\sqrt{3}q}{4m} \right), \\
\xi_\omega &= C \mu^2 \left(1 - 2\mu_5 \frac{\sqrt{3}q_5}{4m} \left[1 + \frac{\mu_5^2}{3\mu^2} \right] \right), \\
\xi_B &= C \mu \left(1 - \mu_5 \frac{\sqrt{3}q_5}{4m} \right)
\end{align*}
\]

Result: CME, CVE, etc. are realized in an n-charged AdS black hole model (plus background gauge field), when appropriately reduced to a two-charge model (n=2).

Other AdS/QCD models:
Lifschytz and Lippert (2009), Yee (2009),
Part III: CME in anisotropic fluids

Gahramanov, Kalaydzhyan & I.K.,
Possible dependence of the charge asymmetry on v_2

Event-by-event anisotropy (v_2^{obs}) dependence (low p_T)

Investigate the charge asymmetry as a function of the anisotropy v_2^{obs} of the measured particles in mid-central 20–40% centrality collisions ($B \approx \text{const.}$). Consider (rare) events with different v_2^{obs}.

Observations:
- same-sign particles are emitted more likely in UD direction the larger v_2^{obs}
- same-sign particles are emitted less likely in LR direction the larger v_2^{obs} (the dependence is significantly weaker for opposite-sign particles)
- \Rightarrow strong v_2^{obs} dependence of the difference between UD and LR

\Rightarrow charge separation depends approx. linearly on v_2^{obs} (apparently in contradiction with the CME)
Build-up of the elliptic flow and momentum anisotropy

Central question: In anisotropic fluids, does the chiral conductivity depend on ν_2?

Sketch of the time-evolution of the momentum anisotropy ε_P:

\[
\varepsilon_P = \frac{P_T - P_L}{P_T + P_L}
\]

at freeze-out:

$\nu_2 \approx \varepsilon_P / 2$

Our model describes a state after thermalization with unequal pressures $P_T \neq P_L$. We do not model the full evolution of ε_P.

sketch based on Huovinen, Petreczky (2010)
Hydrodynamics of an anisotropic fluid

Anisotropic fluid with *n* anomalous U(1) charges

stress-energy tensor $T^\mu\nu$ and U(1) currents $j^{a\mu}$:

$$T^\mu\nu = (\epsilon + P_T)u^\mu u^\nu + P_T g^{\mu\nu} - (P_T - P_L)v^\mu v^\nu + \tau^{\mu\nu}$$

$$j^{a\mu} = \rho^a u^\mu + \nu^{a\mu}$$

orthogonality and normalization:

$$u_\mu u^\mu = -1, \quad v_\mu v^\mu = 1, \quad u_\mu v^\mu = 0$$

local rest frame:

$$u^\mu = (1, 0, 0, 0) \quad v^\mu = (0, 0, 0, 1)$$

$$T^\mu\nu = \begin{pmatrix}
\epsilon & 0 & 0 & 0 \\
0 & P_T & 0 & 0 \\
0 & 0 & P_T & 0 \\
0 & 0 & 0 & P_L
\end{pmatrix}$$

thermodynamic identity:

$$\epsilon + P_T = Ts + \mu \rho$$
Chiral magnetic and vortical effects

Anisotropic fluid with one axial and one vector U(1)

Repeating the hydrodynamic computation of Son & Surowka (for \(n=2 \)), we find the following result for the chiral magnetic effect:

\[
\Delta j^\mu = \kappa_B B^\mu, \quad \kappa_B = C' \mu_5 \left(1 - \frac{\mu \rho}{\epsilon + P_T} \right)
\]

or, for small \(\varepsilon_p \),

\[
\kappa_B \approx C' \mu_5 \left(1 - \frac{\mu \rho}{\epsilon + \bar{P}} \left[1 - \frac{\varepsilon_p}{6} \right] \right)
\]

as before \quad \text{anisotropy-dependent}

\(\bar{P} = \frac{2P_T + P_L}{3} \)

multiple charge case (\(n \text{ arb.} \)):

\[
\xi^{ab}_B = C'^{abc} \mu^c - \frac{1}{2} \frac{\rho^a}{\epsilon + P_T} C^{bcd} \mu^c \mu^d
\]
Boosted anisotropic AdS black hole solution (w/ \(n \) U(1)’s)

5d AdS black hole solution (ansatz):

\[
ds^2 = (r^2 w_T(r) P_{\mu\nu} - f(r) u_\mu u_\nu) \, dx^\mu dx^\nu - 2u_\mu dx^\mu dr
- r^2 (w_T(r) - w_L(r)) v_\mu v_\nu \, dx^\mu dx^\nu,
\]

\[
A^a = (A_0^a(r) u_\mu + A_\mu^a) \, dx^\mu
\]

asymptotic solution (close to the boundary):

\[
f(r) = r^2 - \frac{m}{r^2} + \sum_a \frac{(q_a)^2}{r^4} + \mathcal{O}(r^{-6})
\]

\[
w_T(r) = 1 + \frac{m\zeta}{4r^4} + \mathcal{O}(r^{-8})
\]

\[
w_L(r) = 1 - \frac{m\zeta}{2r^4} + \mathcal{O}(r^{-8})
\]

\[
A_0^a(r) = -\frac{\sqrt{3}q_a}{2r^2} + \mathcal{O}(r^{-10})
\]

no analytic solution \(\Rightarrow \) numerical solution
Numerical solution for the AdS black hole background

Shooting techniques provide numerical plots for the functions $f(r)$, $A_0(r)$, $w_T(r)$, $w_L(r)$ for $\zeta=10$:

outer horizon: $r_+ = 1$
First-order transport coefficients

The holographic computation of the transport coefficients is very similar to that in the isotropic case.

Magnetic conductivities (result):

\[\xi_{B}^{ab} = \frac{4}{16\pi G_{5}} \left(S^{abc} \mu^{c} - \frac{1}{2} C(r_{+}) S^{bcd} \mu^{c} \mu^{d} \right) \]

\[\mu^{a} \equiv A_{0}^{a}(r_{H}) - A_{0}^{a}(\infty), \quad S_{abc} = 4\pi G_{5} C_{abc} \]

\[C(r_{+}) = \frac{r_{+} \partial_{r_{+}} A_{0}^{a}(r_{+})}{r_{+}(f'(r_{+}) - 4 \sum_{a} A_{0}^{a}(r_{+}) \partial_{r_{+}} A_{0}^{a}(r_{+}))} \frac{1}{w_{L}(r_{+})^{1/2}} \]

\[= \frac{\sqrt{3}}{4m} \frac{1}{1 + \frac{1}{4} \zeta} q_{a} = \frac{\rho^{a}}{\varepsilon + P_{T}} \]

⇒ find agreement with hydrodynamics if the orange factors agree
(needs to be shown numerically)
Numerical agreement with hydrodynamics

Numerical plot $w_L(r_+)$ as a function of the anisotropy:

$$w_L(r_+) = (1 + \frac{1}{4}\zeta)^2$$
Conclusions

I presented two descriptions of the CME (and related effects) in

a) isotropic plasmas \(P = P_T = P_L \):

i) \textbf{hydrodynamic model:} \(\text{U}(1)_A \times \text{U}(1)_V \) fluid with triangle anomaly

ii) \textbf{holographic fluid-gravity model:} 5d AdS-Reissner-Nordstrom-like solution with two \(\text{U}(1) \) charges

Agreement was found between both models.

b) anisotropic plasmas \(P_T \neq P_L \):

- experimental data suggests possible \(v_2 \)– dependence of the charge separation
- Does the chiral magn. conductivity \(\kappa_B \) depend on \(v_2 \)?
- we constructed anisotropic versions of the above \(\text{U}(1)_A \times \text{U}(1)_V \) models and found

\[
\kappa_B \approx C \mu_5 \left(1 - \frac{\mu \rho}{\epsilon + \tilde{P}} \left[1 - \frac{\varepsilon_p}{6} \right] \right) \quad (\tilde{P} = \frac{2P_T + P_L}{3})
\]

Is the observed charge asymmetry a combined effect of the CME (1\(^{\text{st}}\) term in \(\kappa_B \)) and the dynamics of the system (2\(^{\text{nd}}\) term)?