Strong Dynamics at the LHC?

Estia Eichten (Fermilab)

I will focus on pedestrian (4D) new strong dynamics (ETC, Walking TC, Top Color, LSTC ...)

- Implications of Early LHC results
- Some Suggested Signatures?
Implications of early LHC Results

- Excess in the 125 GeV region: Is it the SM higgs?
 - Both ATLAS and CMS see 5σ excess
 - spin and parity: 0^+ or 0^- (or 2^+)? Measure angular correlations. First Critical Issue
 - $ZZ^* \rightarrow 4$ leptons; $WW^* \rightarrow$ lepton + E_T (missing) + 2jets angular correlations.
 - LHC experiments likely will determine by end of this run 2012
 - If not 0^+, then not the Higgs and likely new strong dynamics responsible for EWSB
 - This is difficult because a 0^- state couples gauge bosons only through loops.
 - Highly suppressed vector boson fusion and associated production contributions to production of a pseudoscalar.
 - Rate for WW^* and ZZ^* decays of the 125 state would be highly suppressed.
 - How close to SM values are the WW/ZZ couplings? Second Critical Issue

ATLAS: m_H (peak) = 126.5 GeV/c²

CMS: m_H (peak) = 125.3 GeV/c²
Implications of early LHC Results

- Measure couplings to distinguish SM Higgs from BSM scalars

\[\Gamma(h(125)) = 4.03 \text{ MeV} \]

- Within large present errors, ATLAS and CMS results consistent with SM Higgs couplings. **Third Critical Issue**

- But might still be consistent with a fine tuned pseudoscalar interpretation. [E.E., K. Lane, A. Martin]
Strong Dynamics Possibilities

- Perturbative
 - SM, 2HDM (SUSY)

- Higgs
 - more scalars
 - composite higgs, dilaton
 - technipions

- Strong Dynamics
 - ETC, WalkingTC, LSTC, Composite Higgs, ...

- Many spin zero states

- SM
 - non SM
couplings
No evidence for new physics beyond the Standard Model (BSM) to date:

- ATLAS limits

\[
\text{CMS limits}
\]

However there must be new physics!!! WHY? All the usual reasons. Incomplete and theoretically problematic (unnatural ala 'tHooft).
Signals for Strong Dynamics

- New V, A states: (Detailed studies in the LSTC model)
 [E. E., K. Lane, A. Martin, E. Pilon arXiv:1206.0186]
 - $\rho_T, a_T \rightarrow W \pi_T \rightarrow l \nu j j$ - Signal at CDF (not seen at D0), LHC studies ongoing

CDF

Excess stable w.r.t. changes in selection, despite change in big shape at low mass

Eichten, Lane, Martin

PRL 106, 251803 (2011)

Particle level, no detector simulation

D0 limits to be compared with CDF $\sigma(pp \rightarrow WX) = 3.0 \pm 0.7$ pb
difference w.r.t. D0 2.5σ

Figure 7: The CMS M_{jj} distributions for 4.7 fb$^{-1}$ of $W \rightarrow \mu\nu\nu$ plus two or three jets data at $\sqrt{s} = 7$ TeV before (top left) and after (top right) the background subtraction summarized in the text; from Ref. [43]. On the bottom left is our M_{jj} distribution for the $\rho_T, a_T \rightarrow W\pi_T \rightarrow l\nu jj$ signal and backgrounds at the LHC for 5 fb$^{-1}$. Augmented ATLAS-like cuts as described in the text were used. The open red histograms are the ρ_T and a_T signals times 10.
Signals for Strong Dynamics

- $\rho \tau, a_T \rightarrow Z \pi \pi \rightarrow l^+ l^- j j$ - Best channel for LHC

- $\rho \tau, a_T \rightarrow W Z \rightarrow l l l j j$ - Unavoidable channel with possibly small branching rate

• Other states expected but model dependent: New fermions and technipions
Summary

• Early results from the LHC are encouraging for a strong dynamical explanation (ala technicolor) of Electroweak Symmetry Breaking:
 - No SUSY (yet)
 - No signs of Extra Dimensions (yet)

• New Strong Dynamics must explain:
 - S parameter -> not like QCD
 - quark masses and limits on flavor changing neutral currents -> Extended TC, walking TC, ...
 - top quark mass -> can not treat TC in isolation, ETC, walkingTC, TC2, ...

• No complete model. Look at possible low energy signals
 - CDF Wjj signal -> Zjj and improved cuts
 - LHC tests -> Zjj, dileptons, $W/Z/\gamma + X$, WW, WZ, ...

• Very exciting times - the LHC will provide a clearer picture of the new physics within the next year. Observation (or limits) on new pseudoscalar particles [color octets, triplets (leptoquarks) and color singlets] and spin one particles [$\rho_T, \eta_T, \omega_T, A_T, ...$] will provide valuable clues to possible new strong dynamics.
Brief History
A New Strong Dynamics

- Technicolor provides a natural solution to the origin of EWSB without elementary scalars BUT:
 - Precision measurements of S and T parameters rule out QCD-like model.
 - One technifermion doublet $\Delta S = N_{TC}/(6\pi)$

$$S = 4\pi \int \frac{dm^2}{m^4} \left[\sigma^3_V(m^2) - \sigma^3_A(m^2) \right]^{\text{new}}$$

- New strong dynamics not QCD-like

- No masses for quarks and leptons generated
 - There are no couplings between technifermions and ordinary fermions.
 - Effective Yukawa couplings are all zero.

- Requires Extended Technicolor (ETC) (Dimopoulos and Susskind (1979); Eichten and Lane (1980))
 - Contains fermions and technifermions in same representation of ETC gauge interactions
 - When the gauge group G_{ETC} breaks to G_{TC}, some ETC gauge bosons acquire masses: $\sim g_{ETC} \Lambda_{ETC}$
ETC Interactions

- Form of the effective lagrangian below ETC scale:
 - preserves $SU_L(2) \times U(1)$ EW symmetry
 - when EWSB occurs these terms generates masses for technipions; masses for quarks and leptons; and possible FCNC in the quark sector.

$$\frac{g_{ETC}^2}{M_{ETC}^2} \left[C_1(T_L^\dagger \sigma^\mu T_L)(T_R^\dagger \sigma^\mu T_R) + C_2(T_L^\dagger \sigma^\mu q_L)(q_R^\dagger \sigma^\mu T_R) + C_3(q_L^\dagger \sigma^\mu q_L)(q_R^\dagger \sigma^\mu q_R) \right]$$

technipion masses quark and lepton masses and mixings FCNC

$$F_{EW}^2 M_{\pi T}^2 \approx \frac{g_{ETC}^2 \langle T \bar{T} T \bar{T} \rangle_{ETC}}{M_{ETC}^2} \approx \frac{16\pi^2 F_{EW}^2}{\Lambda_{ETC}^2}$$

- Basic conflict between mass generation and suppression of FCNC's

$$m_{q,\ell}(M_{ETC}) \approx \frac{g_{ETC}^2 \langle T \bar{T} T \bar{T} \rangle_{ETC}}{M_{ETC}^2} \approx \frac{4\pi F_{EW}^3}{\Lambda_{ETC}^2}$$

but limits on FCNC's in K system require $\Lambda_{ETC} > 10^3$ TeV

- What about the top quark? Separation of ETC and TC scales questionable

[2] [3]
Walking Technicolor and More

- One possible solution for the first two problems is the idea of walking TC:
 - If there is a large anomalous dimension γ_m the issue [2] is reduced.

$$\langle \bar{T}T \rangle_{ETC} = \exp \left(\int_{\Lambda_{TC}}^{M_{ETC}} \frac{d\mu}{\mu} \gamma_m(\mu) \right) \langle \bar{T}T \rangle_{TC} \quad \text{if} \quad \gamma_m \approx 1$$

$$\langle \bar{T}T \rangle_{ETC} \approx \frac{M_{ETC}}{\Lambda_{TC}} \langle \bar{T}T \rangle_{TC} \quad m_q, m_l \sim \frac{g_{ETC}^2}{M_{ETC}^2} (\frac{\lambda_{ETC}}{\Lambda_{TC}})$$

- This can happen if theory near fixed point (coupling runs slowly --> walks) or nearly conformal theory.

This lends itself naturally to multiscale models

- In these cases the issue [1] may also be resolved

- Much lattice effort now focused on evaluating this option.

- In top color models [Hill(1991;1995)] only a part of the top mass is generated by ETC interactions. This may resolve issue [3].

- At present there is no complete model that resolves all these issues. We will have to look to experiment to give us clues to how to build a complete dynamical EWBS model.