The effect of an infrared divergent quark-antiquark interaction kernel on other Green functions

Reinhard Alkofer & Mario Mitter

Institute of Physics, University Graz

Confinement X
Garching, Oct. 9, 2012
Motivation

Quark Confinement:
Linearly rising potential between static colour sources!

Experiment:
Hadrons fall *approximately* on Regge trajectories

Lattice:
Wilson loop follows area law

Motivation

Quark Confinement \(\Rightarrow \)
gauge-invariant static potential \(V(r) = \sigma r + \ldots, \sigma \approx 1 \text{ GeV/fm} \)

This potential is contained in gauge-fixed correlation functions, i.e., QCD Green’s functions

Then:

Infrared divergence of the quark–antiquark scattering kernel?

Functional eqs. (DSEs, ERG, nPI, \ldots) & Slavnov-Taylor ids.: Consequences for all other Green’s functions \ldots!?!
Landau gauge QCD Green’s functions

▶ Green’s functions of colour-charged fields: **gauge fixing required!**
▶ Least number of Green’s functions and best investigated gauge: **Landau gauge**
▶ Historically: **Confining or confined gluons?**

▶ Lattice Landau gauge gluon propagator & decoupling and scaling solutions of functional eqs.: **Confined, i.e., IR suppressed, gluon propagator**

▶ Functional eqs.: **Quark-gluon vertex IR enhanced**
M. Hopfer (Talk on Thursday)
▶ **Hypothesis: 4-point function IR divergent**
Landau gauge QCD Green’s functions

- Green’s functions of colour-charged fields: **gauge fixing required!**
- Least number of Green’s functions and best investigated gauge: **Landau gauge**
- Historically: **Confining or confined gluons?**

A note on other gauges with confining and (?) confined gluons:

- Maximally abelian gauge:
 IR enhanced colour-diagonal & IR suppressed off-diagonal gluons
 cf. V. Mader (Talk today)
- Coulomb gauge:
 IR enhanced D_{00} & IR suppressed spatial gluon propagator
 cf. talks by H. Reinhardt and P. Watson

- Lattice Landau gauge gluon propagator &
 decoupling and scaling solutions of functional eqs.:
 Confined, i.e., IR suppressed, gluon propagator

- Functional eqs.:
 Quark-gluon vertex IR enhanced
Landau gauge QCD Green’s functions

- Green’s functions of colour-charged fields: gauge fixing required!
- Least number of Green’s functions and best investigated gauge: **Landau gauge**
- Historically: **Confining or confined gluons?**

- Lattice Landau gauge gluon propagator & decoupling and scaling solutions of functional eqs.: **Confined, i.e., IR suppressed, gluon propagator**

- Functional eqs.:
 - Quark-gluon vertex IR enhanced
 - M. Hopfer (Talk on Thursday)

- **Hypothesis: 4-point function IR divergent**
Green’s functions of colour-charged fields: **gauge fixing required!**

Least number of Green’s functions and best investigated gauge: **Landau gauge**

Historically: **Confining or confined gluons?**

Lattice Landau gauge gluon propagator & decoupling and scaling solutions of functional eqs.: **Confined, *i.e.*, IR suppressed, gluon propagator**

There are several solutions on the lattice!

A. Sternbeck (Talk on Thursday)

- **Functional eqs.:**
 - Quark-gluon vertex IR enhanced

M. Hopfer (Talk on Thursday)

- **Hypothesis: 4-point function IR divergent**
Green’s functions of colour-charged fields: gauge fixing required!

Least number of Green’s functions and best investigated gauge: Landau gauge

Historically: Confining or confined gluons?

Lattice Landau gauge gluon propagator & decoupling and scaling solutions of functional eqs.: Confined, \textit{i.e.,} IR suppressed, gluon propagator

Functional eqs.:
Quark-gluon vertex IR enhanced
M. Hopfer (Talk on Thursday)

Hypothesis: 4-point function IR divergent
Assuming an IR divergent 4-point function

How is Confinement described by Green’s functions?

► Assume quark 4-point function to be maximally IR singular, \(i.e., \propto 1/k^4 \):

\[
p_1 \rightarrow p_3 \propto \frac{1}{(p_1 - p_3)^4}\bigg|_{\text{reg.}}
\]

► Put \textit{e.g.} DSE for 4-quark function:

\[
\begin{align*}
\begin{array}{ccc}
\begin{tikzpicture}
\fill (0,0) circle (0.1cm);
\draw[thick, ->] (-1,1) -- (1,1);
\draw[thick, ->] (-1,-1) -- (1,-1);
\end{tikzpicture}
& =
\begin{tikzpicture}
\fill (0,0) circle (0.1cm);
\draw[thick, ->] (-1,1) -- (1,1);
\draw[thick, ->] (-1,-1) -- (1,-1);
\end{tikzpicture}
& +
\begin{tikzpicture}
\fill (0,0) circle (0.1cm);
\draw[thick, ->] (-1,1) -- (1,1);
\draw[thick, ->] (-1,-1) -- (1,-1);
\end{tikzpicture}
& +
\begin{tikzpicture}
\fill (0,0) circle (0.1cm);
\draw[thick, ->] (-1,1) -- (1,1);
\draw[thick, ->] (-1,-1) -- (1,-1);
\end{tikzpicture}
& +
\begin{tikzpicture}
\fill (0,0) circle (0.1cm);
\draw[thick, ->] (-1,1) -- (1,1);
\draw[thick, ->] (-1,-1) -- (1,-1);
\end{tikzpicture}
\end{array}
\end{align*}
\]
Consequences an IR divergent 4-point function

For simplicity: Analysis first for fundamentally charged scalar!

Consistency requirements:

- Boundedness of higher n-point functions to $1/k^4$ \Rightarrow matter-gluon vertex less singular \Rightarrow **colour structure**

- One-gluon exchange fails to reproduce this colour structure!

- All 4-point functions (4-gluon, ghost-gluon, matter-gluon, matter-ghost) inherit the $1/k^4$ singularity in specific colour channels.

- Higher n-point functions contain contributions $\propto 1/k^4$ with k being the momentum transfer between two coloured clusters.

- Propagators and 3-point functions protected by cancellations.

Decoupling theorem circumvented by IR singularities:

One heavy fundamental charge induce changes in the IR behaviour of YM Green’s functions!?!?
Assumption of confining IR singularity in matter-matter scattering kernel leads to several wanted features.

No decoupling of infinitely heavy charges?

Further to be clarified:

• Absence of van-der-Waals forces?
• Casimir scaling? N-ality?
• Relation to dynamical chiral symmetry breaking / restoration?
• …
Landau gauge Green’s functions:

- Linear confinement ("1/k^4") consistently possible in \(n \geq 4 \)-point functions.
- Decoupling theorem circumvented by IR singularities. (?)

Outlook:

- Tensor structures of quark(-gluon/ghost) \(n \)-point function?
- Absence of confining interaction between colour singlets?
- Explicit calculation for a consistently truncated system: Nature of confining force? Hadrons as bound states?
Landau gauge Green’s functions:

- Linear confinement (“1/k^4”) consistently possible in \(n \geq 4 \)-point functions.
- Decoupling theorem circumvented by IR singularities. (?)

Outlook:

- Tensor structures of quark(-gluon/ghost) \(n \)-point function?
- Absence of confining interaction between colour singlets?
- Explicit calculation for a consistently truncated system: Nature of confining force? Hadrons as bound states?
51st Schladming Winter School: Extreme QCD in and out of Equilibrium
Feb. 23 – March 2, 2013

Invited speakers: