Confinement viewed with dyon and dimeron ensembles

M. Müller-Preussker
Humboldt-University Berlin, Institute of Physics

Quark Confinement and the Hadron Spectrum X, TU Munich, October 2012
Coauthors:

- F. Bruckmann (U. Regensburg),
 H. Forkel, E.-M. Ilgenfritz, M. Wagner (HU Berlin)
- Bachelor and master students (HU Berlin):
 S. Dinter, P. Gerhold, B. Maier, F. Zimmermann
Outline:

1. Introduction, motivation
2. Instantons at $T > 0$: calorons with non-trivial holonomy
3. Dyon gas ensembles and confinement
4. $T = 0$: Simulating dimeron ensembles
5. Summary
1. Introduction, motivation

Reinvestigation of an old issue: semiclassical approach to QCD path integral

[’t Hooft, ’76; Callan, Dashen, Gross, ’78; Gross, Pisarski, Yaffe, ’81;
Ilgenfritz, M.-P., ’81; Shuryak, ’82; Diakonov, Petrov, ’84]

\[T = 0: \text{Belavin-Polyakov-Shvarts-Tyupkin (BPST) instantons} \]
\[T > 0: \text{Harrington-Shepard (HS) calorons} \]

BPST: \[A_{a,\mu}^{\text{inst}}(x) = R_{a\alpha} \bar{\eta}_{\mu\nu}^{\alpha} \frac{x_{\nu}}{x^{2} + \rho^{2}}x^{\mu}, \quad A_{a,\mu}^{\text{antiinst}} : \bar{\eta} \leftrightarrow \eta \]

superpositions of “pseudo-particles”

\[A_{\text{class}}(z = \{\rho^{(i)}, x^{(i)}, R^{(i)}\}) = \sum_{i=1}^{N_{+} + N_{-}} A_{a,\mu}^{(i)}(x - x^{(i)}, \rho^{(i)}, R^{(i)}), \]

in order to approximate the functional integral by \[A = A_{\text{class}}(z) + \varphi \]

\[\int DA \exp(-S[A]) \simeq \sum_{\text{class}} \int [dz] \exp(-S[A_{\text{class}}]) \int D\varphi \exp \left(-\frac{1}{2!} \int \varphi \frac{\delta^{2}S}{\delta A^{2}}|_{A_{\text{class}}\varphi} \right) + \cdots \]

\[\int [dz] \text{ – modular space integration (“collective coordinates”).} \]

Turns path integral into statstistical mechanics partition function.
• Powerful approach for non-perturbative phenomena like chiral symmetry breaking and $U_A(1)$ problem \iff confinement hard to explain
 [Reviews by Schäfer, Shuryak, ’98; Forkel, ’00; Dyakonov, ’03;...]

• (Anti)selfdual solutions seen on the lattice with “cooling”, “smoothing”,...
 [Teper, ’86; Ilgenfritz, Laursen, M.-P., Schierholz, Schiller, ’86; Polikarpov, Veselov, ’88; ...]

Old idea to implement confinement \implies increase entropy by “dissociation” of instantons into constituents (“instanton quarks”).

• $T = 0$: “meron” mechanism [Callan, Dashen, Gross, ’77 - ’79].
 [Lenz, Negele, Thies, ’03-’04; M. Wagner, ’06]

• $T > 0$: KvBLL (multi-) calorons with non-trivial holonomy – “dyons”

Here simulate caloron, dyon ensembles – for $0 < T < T_c$, meron pair (“dimeron”) ensembles – for $T = 0$.
2. Instantons at \(T > 0 \): calorons with non-trivial holonomy

Partition function

\[
Z_{YM}(T, V) \equiv \text{Tr} \, e^{-\frac{\hat{H}}{T}} \propto \int DA \, e^{-S_{YM}[A]} \quad \text{with} \quad A(\vec{x}, x_{4}+b) = A(\vec{x}, x_{4}), \; b = 1/T.
\]

Old treatment with HS caloron solutions

\(\equiv \) \(x_{4} \)-periodic instanton chains

\[A^{a_{\text{HS}}} = \tilde{\eta}_{a}^{\mu} \partial_{\nu} \log(\Phi(x)) \]

\[
\Phi(x) = 1 + \sum_{k \in \mathbb{Z}} \frac{\rho^{2}}{(\vec{x} - \vec{z})^{2} + (x_{4} - z_{4} - kb)^{2}} \\
= 1 + \frac{\pi \rho^{2}}{b|\vec{x} - \vec{z}|} \frac{\sinh \left(\frac{2\pi}{b} |\vec{x} - \vec{z}| \right)}{\cosh \left(\frac{2\pi}{b} |\vec{x} - \vec{z}| \right) - \cos \left(\frac{2\pi}{b} (x_{4} - z_{4}) \right)}
\]

\(^{t} \text{Hooft symbols:} \quad \eta_{a\mu\nu} = \varepsilon_{a\mu\nu}, \quad \eta_{a\mu4} = -\eta_{a4\mu} = \delta_{a\mu} \quad \text{for} \quad \mu, \nu = 1, 2, 3, \quad \eta_{a44} = 0; \quad \tilde{\eta}_{a\mu\nu} = (-1)^{\delta_{\mu4} + \delta_{\nu4}} \eta_{a\mu\nu}. \)

HS caloron exhibits trivial holonomy, i.e. Polyakov loop behaves as:

\[
\frac{1}{2} \text{tr} \mathbf{P} \exp \left(i \int_{0}^{b=1/T} A_{4}(\vec{x}, t) \, dt \right) \xrightarrow{\|\vec{x}\| \rightarrow \infty} \pm 1.
\]
Kraan - van Baal - Lee - Lu solutions (KvBLL)
= (multi-) calorons with non-trivial asymptotic holonomy ($SU(2)$)

\[P(\vec{x}) = P \exp \left(i \int_0^{b=1/T} A_4(\vec{x}, t) \, dt \right) \bigg|_{|\vec{x}| \to \infty} \quad P_\infty = e^{2\pi i \omega \tau_3} \not\in \mathbb{Z}(2) \]

Holonomy parameter: \(0 \leq \omega \leq \frac{1}{2}, \quad \omega = \frac{1}{4} \) – maximally non-trivial holonomy.

Action density of an $SU(3)$ caloron (van Baal, ’99)
\[\implies \text{not a simple } SU(2) \text{ embedding into } SU(3) !! \]
SU(2) KvBLL caloron with non-trivial holonomy: $0 < \omega < \frac{1}{2}$

- (anti)selfdual with topological charge $Q_t = \pm 1$,
- has two centers at \vec{x}_1, \vec{x}_2 ⇒ “instanton quarks”,
 carry opposite magnetic charges (visible in maximally Abelian gauge),
- limiting cases:
 - $\omega \to 0$ ⇒ ‘old’ HS caloron,
 - $|\vec{x}_1 - \vec{x}_2|$ large ⇒ two static BPS monopoles or “dyon pair” (DD) with topological charges (\sim masses)
 $q^{dyon}_t = 2\omega, \quad 1 - 2\omega$,
 - $|\vec{x}_1 - \vec{x}_2|$ small ⇒ non-static single caloron (CAL).

- $L(\vec{x}) = \frac{1}{2} \text{tr} P(\vec{x}) \to \pm 1$ close to $\vec{x} \simeq \vec{x}_{1,2}$ ⇒ “dipole” structure.
- dyons localizable from zero-modes of the fermion Dirac operator.
KvBLL caloron portrait
Action density

Polyakov loop

CAL

DD

Seen on the lattice with various filter techniques.
[V. Bornyakov, E.-M. Ilgenfritz, B. Martemyanov, M. M.-P., ..., '02 - '09]
Simulating caloron ensembles

[Gerhold, Ilgenfritz, M.-P., NPB 760, 1 (2007)]

Random randomly localized superpositions of KvBLL calorons in a 3d box.

– Superpone in algebraic gauge ⇒ A_4-components fall off.
– Gauge rotation into periodic gauge

$$A_{\mu}^{per}(x) = e^{-2\pi i x_4 \vec{\omega} \cdot \vec{\tau}} \cdot \sum_i A_{\mu}^{(i), alg}(x) \cdot e^{+2\pi i x_4 \vec{\omega} \cdot \vec{\tau}} + 2\pi \vec{\omega} \cdot \delta_{\mu, 4}.$$

Study the influence of the holonomy

• same fixed holonomy for all (anti)calorons: $\mathcal{P}_\infty = \exp 2\pi i \omega \tau_3$,
 compare: $\omega = 0$ – trivial versus $\omega = 1/4$ – maximally non-trivial,

• Fix parameters:
 temperature: $T = 1$ fm$^{-1} \simeq T_c$,
density: $n = 1$ fm$^{-4}$,
scale size: fixed $\rho = 0.33$ fm
Polyakov loop correlator \rightarrow quark-antiquark free energy

\[F(R) = -T \log \langle L(\vec{x})L(\vec{y}) \rangle, \quad R = |\vec{x} - \vec{y}| \]

\Rightarrow Non-trivial (trivial) holonomy creates long-distance coherence (incoherence) and (de)confines for standard instanton or caloron liquid model parameters.
3. Dyon gas ensembles and confinement

Working hypothesis (cf. Polyakov, ’77):
Confinement evolves from magnetic monopoles effectively in 3D.
Here: monopoles = dyons (KvBLL caloron constituents) for $0 < T < T_c$.

Assume:
integration measure over KvBLL caloron moduli space
rewritten in terms of dyon degrees of freedom,
⇒ difficult task for (still unknown) general multi-caloron solutions.

Diakonov, Petrov, ’07:
proposed integration measure for all kind dyons
(Abelian fields; no antidyons, i.e. CP is violated).
Dyon ensemble statistics analytically solved ⇒ confinement.

However, observation from numerical simulation:
Moduli space metric satisfies positivity only for a small fraction
of dyon configurations and only for low density ⇒ inconsistent metric.
Simplify the model:

- Far-field limit, i.e. purely Abelian monopole fields, non-trivial holonomy.
- Neglect moduli space metric and describe random monopole gas.

[Bruckmann, Dinter, Ilgenfritz, Maier, M.-P., Wagner, PRD 85, 034502 (2012)]

Monopole field:

\[a_0(r; q) = \frac{q}{r}, \quad a_1(r; q) = -\frac{qy}{r(r - z)}, \quad a_2(r; q) = +\frac{qx}{r(r - z)}, \quad a_3(r; q) = 0, \]

\(r = (x, y, z), \quad r = |r| - 3d \) distance to the dyon center, \(q - \) magnetic charge.

Holonomy to be added to superponed monopole fields:

\[A_0 \rightarrow 2\pi \omega T \tau_3, \]

\[P(r) \equiv \frac{1}{2} \text{Tr} \left(\exp \left(i \int_0^{1/T} dx_0 \ A_0(x_0, r) \right) \right) \rightarrow \frac{1}{2} \text{Tr} \left(\exp \left(2\pi i \omega \tau_3 \right) \right) = \cos(2\pi \omega), \]
Superposition of gauge fields of $2K$ dyons:

$$A_\mu(r) = \left(\delta_\mu_0 2\pi \omega T + \frac{1}{2} \sum_{i=1}^{K} \sum_{m=1}^{2} a_\mu(r - r_i^m; q_m) \right) \tau_3,$$

r_i^m and $q_m = -(-1)^m$ – positions and magnetic charges of i-th dyon ($m = 1$), antidyon ($m = 2$), respectively.

Local Polyakov loop $P(r)$:

$$P(r) = \cos \left(2\pi \omega + \frac{1}{2T} \Phi(r) \right), \quad P(r) \bigg|_{\omega=1/4} = -\sin \left(\frac{1}{2T} \Phi(r) \right),$$

where

$$\Phi(r) \equiv \sum_{i=1}^{K} \sum_{m=1}^{2} \frac{q_m}{|r - r_i^m|} = \sum_{i=1}^{K} \left[\frac{1}{|r - r_1^i|} - \frac{1}{|r - r_2^i|} \right].$$

Compute free energy of a static $\bar{Q}Q$ pair from Polyakov loop correlator

$$F_{\bar{Q}Q}(d) = -T \ln \left\langle P(r) P^\dagger(r') \right\rangle, \quad d \equiv |r - r'|.$$
Expectation value:

\[\langle O \rangle = \int \prod_{i=1}^{K} dr_i^1 dr_i^2 O \left(\{ r_i^1, r_i^2 \} \right) \bigg/ \int \prod_{i=1}^{K} dr_i^1 dr_i^2 \]

\[= \int \prod_{i=1}^{K} dr_i^1 dr_i^2 O \left(\{ r_i^1, r_i^2 \} \right) / V^{2K}, \]

\(V \) – spatial volume \(\implies \rho = \frac{2K}{V} \) – density of monopole gas.
\(\omega, T, \) and \(\rho \) – basic parameters of the model.

Expectation values can be computed numerically generating random distributions of the dyon positions in the volume \(V \).

Monopole fields have infinite range \(\implies \) strong finite size effects (well-known e.g. in plasma physics)

– use infinite identical replica of volumes,
– separate short-distance and long-distance contributions.
\(\implies \) talk by B. Maier – this section
Fortunately, model can be solved analytically:

Infinite-volume limit \(V \to \infty , \quad d = |\mathbf{r} - \mathbf{r}'| \) large

\[
\langle P(\mathbf{r})P(\mathbf{r}') \rangle = \frac{1}{2} \exp \left(- \frac{\pi d \rho}{2 T^2} + \text{const.} \right)
\]

\[\Rightarrow \text{free energy} \quad F_{\bar{Q}Q}(d) = \sigma d + \text{const.}\]

\[\Rightarrow \text{string tension} \quad \sigma = \frac{\pi \rho}{T}.
\]

At arbitrary finite distance \(d \):

Polyakov loop correlator can be obtained by numerical integrations.
Comparison with Ewald’s method:

Ewald’s result extrapolated to $V \to \infty$

$F_{\bar{Q}Q}(d)/T$ vs. d for $V \to \infty$

\implies excellent agreement !!

\implies simplest dyon gas model provides strict confinement.
4. $T = 0$: Simulating dimeron ensembles

– KvBLL-like solutions in Euclid. 4d Yang-Mills theory unknown.
– Possibility: Dimeron (D) configurations [De Alfaro, Fubini, Furlan, '76 - '77]

single (anti)merons: $Q_t = \pm 1/2, \quad S \to \infty$.

(anti)dimeron = (anti)meron pair ($r \equiv$ regular gauge, $SU(2)$): $Q_t = \pm 1$

$$A_{\mu}^{(D,r)}(x; \{x_0, a, u\}) = \left[\frac{(x - x_0 + a)_\nu}{(x - x_0 + a)^2} + \frac{(x - x_0 - a)_\nu}{(x - x_0 - a)^2} \right] u^\dagger \sigma_{\mu\nu} u,$$

$$\sigma_{\mu\nu} := \eta_{a\mu\nu} \tau_a/2, \quad \text{for } D \leftrightarrow \overline{D} \ \text{replace } \eta \leftrightarrow \bar{\eta}, \quad u - \text{colour rotations}.$$

Limiting cases:

$a \to 0 \quad \Rightarrow \quad$ regular gauge instanton,

$a \to \infty \quad \Rightarrow \quad$ well-separated merons with ‘locked’ colour orientation.

D has 11 collective coordinates $z \equiv \{x_0, a, u\}$

(instead of 8 for one instanton, 14 for two single, colour-unlocked merons).

$\Rightarrow \quad$ corresponding increase of entropy in the path integral.
Before superpone (anti)dimerons put them into singular gauge ("s")

\[A^{(D,s)}_\mu \sim \frac{1}{x^3} \text{ for } |x| \gg |a|, \text{ i.e. better localized.} \]

For numerical integrations (action, top. charge, parallel transporters etc.) meron and gauge singularities have to be regularized.

Superpositions: (anti)dimerons superponed (neglect meron-antimeron pairs)

\[
A_\mu(x, \{z_I, \bar{z}_{\bar{I}}\}) = \sum_I N_D A^{(D,s)}_\mu(x, \{z_I\}) + \sum_{\bar{I}} N_{\bar{D}} \bar{A}^{(\bar{D},s)}_\mu(x, \{\bar{z}_{\bar{I}}\}).
\]

Partition function:

\[
Z = \int N_D N_{\bar{D}} \prod_{I, \bar{I}} dz_I d\bar{z}_{\bar{I}} \exp \left\{ -S[A_\mu(x, \{z_I, \bar{z}_{\bar{I}}\})] \right\},
\]

with

\[
S[A] = \frac{1}{2 g^2} \int d^4 x \text{ tr } \{F_{\mu\nu} F_{\mu\nu}\} =: \int d^4 x \ s(x),
\]

\[
F_{\mu\nu}(x) = \partial_\mu A_\nu(x) - \partial_\nu A_\mu(x) - i [A_\mu(x), A_\nu(x)].
\]

In the following study \(g^2 \) dependence ("temperature").
Simulating the dimeron gas:

- Take statistical weight of dimeron confs. $\exp -S[A]$ into account.

Multi-layered multigrid to control boundary + discretization effects.

Inner measurement volume \Leftrightarrow approximate constant action density.
• MC method: Metropolis.
• Ensemble: $N_D = 243$, $N_{\overline{D}} = 244$ in whole volume.
• $g^2 \in \{1, 25, 100, 1000, \infty\}$.

Measurements:
• Ensemble parameters: intermeron distances, neighbour densities, colour correlations,...
• Topology: spatial top. charge distribution, topological susceptibility.
• Wilson loops: static $\bar{Q}Q$-potential, string tension.
Results:

Average meron distance within dimerons $2\langle |a| \rangle$ versus g^2.

\rightarrow Dimerons dissociate into their constituents with increasing g^2.
Spatial topological order / disorder:

average radial density of neighbour pseudoparticles vs. distance d
equal (black), opposite (red) sign topological charges

$g^2 = 1$

$g^2 = 100$
Nearest neighbour dimeron colour-angle distribution $\langle f_\alpha \rangle$

black squares: equal top. charge,
red bullets: opposite top. charge,
blue crosses: random distribution ($g^2 = \infty$).

$g^2 = 1$

$\Rightarrow \alpha \simeq \pi/2$ dominant for DD pairs, $D\bar{D}$ pairs randomly mutually orientated.

\Rightarrow qualitatively understood from two-dimeron (\simeq two-instanton) interactions.
Wilson loops $\log < W >$ vs. area A

\[g^2 = 1, 25, 100, 1000, \infty \]

static potential $V(R)$:

\[g^2 = 1, 25, 100 \]
Dimensionless ratio: string tension / top. susceptibility

\[\frac{\sigma^{1/2}}{\chi^{1/4}} \text{ vs. } g^2 \]

\[\frac{\chi^{1/4}}{\sigma^{1/2}} \approx 0.30, \ldots, 0.55. \]

\[\Rightarrow \text{ Compatible with lattice } (SU(2)): \frac{\chi^{1/4}}{\sigma^{1/2}} = 0.483 \pm 0.006 \] [Lucini, Teper, 01]

\[\Rightarrow \text{ Compatible also with simulations of single meron and regular instanton ensembles } [Lenz, Negele, Thies, 08] \]
5. Summary

- Standard instanton gas/liquid remains phenomenologically important: chiral symmetry breaking, solution of $U_A(1)$, ..., but fails to explain confinement.

- $0 < T < T_c$: KvBLL caloron gas model with non-trivial holonomy very encouraging for description of confinement. Model can be improved.

- Non-interacting Abelian dyon gas model provides strict confinement. Ewald’s method allows to keep finite-size effects under control and provides same infinite volume result. Full modular space metric (?) should be taken into account.

- $T = 0$: Dimerons play similar role as KvBLL calorons for $0 < T < T_c$. Shows Callen-Dashen-Gross mechanism of meron disorder at strong coupling. Reasonable results for topological susceptibility in units of the string tension obtained.