Development of Floating Strip Micromegas Detectors

Jona Bortfeldt

LS Schaile
Ludwig-Maximilians-Universität München

Science Week, Excellence Cluster Universe
December 2nd 2014
Why Detector R&D for High Energy Physics?

- ATLAS muon spectrometer: New Small Wheel
- High-Lumi-LHC: high-rate background $\mathcal{O}(20 \text{ kHz/cm}^2)$
- large-area Micromegas detectors $\mathcal{O}(\text{m}^2)$
Why Detector R&D for Medical Physics?

• tumor irradiation with ions: accurate dose deposition
Why Detector R&D for Medical Physics?

- tumor irradiation with ions: accurate dose deposition
- ions with known initial energy, higher than in therapy
- residual energy measurement → energy loss → contrast
- Micromegas: track single particles with accuracy < 0.5 mm
The Micromegas Detector

- gas amplification 10^3 to 10^4
- charge signal on strips
 - single strip readout
 - spatial resolution $\mathcal{O}(50\mu m)$
 - timing $\mathcal{O}(\text{ns})$
- thin amplification gap & fine segmentation
 - fast drain of positive ions
 - high-rate capable
- COMPASS: precision tracker, high flux
- CAST: photon detector, good energy resolution, low background
- T2K: TPC readout, large area
Floating Strip Micromegas

Challenge: discharges

- charge density $\geq 2 \times 10^6$ e/0.01 mm2 (Raether limit)
- conductive channel \rightarrow potentials equalize
- non-destructive, but dead time \rightarrow efficiency drop

Diagram showing cathode, mesh, copper anode strips, pillars, Ar:CO$_2$ gas, and voltage and time measurements.
Floating Strip Micromegas

-300V

Ar:CO₂

0.5kV/cm

6mm

128μm

+500V

challenge: discharges

- charge density $\geq 2 \times 10^6$ e/0.01 mm² (Raether limit)
- conductive channel → potentials equalize
- non-destructive, but dead time → efficiency drop

idea: minimize the affected region

- “floating” copper strips:
 - strip can “float” in a discharge
 - individually connected to HV via 22MΩ
 - capacitively coupled to readout electronics via pF HV capacitor
 - only two or three strips need to be recharged

→ optimization in dedicated measurements & detailed simulation
Discharge Study with Floating Strip Micromegas

- alpha source
 → induces discharges
- voltage drop on one to three strips
 → recharge current
- global high voltage drop
 → affects all strips
- voltage signal on seven neighboring strips
 → discharge topology
Optimization of the Floating Strip Principle

- standard Micromegas (approximate): 100 kΩ
 300 V drop, dead time ~ 80 ms
- intermediate: 1 MΩ
 20 V drop, dead time ~ 10 ms
- floating strip: 22 MΩ
 0.5 V drop \rightarrow negligible
Detailed Investigation of the Global Voltage Drop

- measure voltage drop of common HV potential
- discrete structure → probably corresponds to discharge of one, two or three strips
- how can we show this? → investigate discharge topology → develop simulation → compare predicted with measured voltage drop
Discharge Topology - Expected Amplitude Correlation

- measure voltage signal on neighboring strips
- two reasons for signals on strips:
 - discharge onto strip
 - capacitive coupling from neighboring strips
Discharge Topology - One Strip

- discharges on separate strips distinguishable
- substructure quantitatively described by simulation

Expected correlation

Jona Bortfeldt (LMU München)
Development of Floating Strip Micromegas
02/12/14 10
- consider the involved capacitances e.g. between neighboring strips, coupling capacitors, cable capacitance ...
- simulate discharges (blue switch)
Optimum Configuration: Global Voltage Drop

- good agreement between simulation and measurement
- only two free parameters
 - response time of HV supply: 500 ms
 - voltage difference between strips at which leakage stops: 220 V
- peaks correspond indeed to discharge of one, two or three strip
floating strip principle works

- discharges: negligible effect on common high-voltage
- discharges are localized

measurements

- muon tracking in high-rate background
- tracking of high-energy pions
- tracking of ions at highest rates
Cosmic Muon Tracking under High-Rate Background Irradiation

floating strip Micromegas
- active area: $6.4 \times 6.4 \, \text{cm}^2$
- 128 strips, 300 µm width, 500 µm pitch
- 10 mm drift gap

reference tracking system
- two non resistive Micromegas
- two resistive Micromegas
- 2×3 trigger scintillators

proton background irradiation
- 20 MeV protons, 550 kHz
- lateral beam spot: $6 \times 0.5 \, \text{cm}^2$
- traverse detector \rightarrow signal on all strips

questions:
- muon identification @ 550 kHz background
- efficiency
- spatial resolution
- stability
Distinguishing Cosmic Muon and Proton Background Signals

Cosmic Muon + Proton Event

- proton produces coincident signals on many strips
- muon signal shape similar to proton
- use reference track for cluster selection

two event classes:
- only muon
- coincident muon and proton → direct influence on signal
Cosmic Muon Tracking in High-Rate Background

residual distribution

![Graph showing muon detection and proton contamination](image)

- muon detection in background possible
- occasionally background misinterpreted as muon

spatial resolution

![Graph showing spatial resolution](image)

- no indirect effects as e.g. space charge
- only deterioration if muon and proton are coincident

efficiency

- expectation for complete blinding: \(\frac{\varepsilon_{\text{irrad}}}{\varepsilon_{\text{no irrad}}} = 0.617 \)
- \(\frac{\varepsilon_{\text{irrad}}}{\varepsilon_{\text{no irrad}}} = 0.709 \)

stability

- discharge rate 0.17 Hz
- inefficiency: \(4.1 \times 10^{-6} \)

→ minimum ionizing particle tracking in high-rate background possible
50 \times 48 \text{ cm}^2 \text{ Micromegas in 120 GeV Pion Beam @ H6 SPS}

floating strip Micromegas
- 1920 strips, 150 \mu \text{m} width, 250 \mu \text{m} pitch
- 8 mm drift gap
- x-y- and angular scans

tracking system:
- six non resistive Micromegas
- two resistive Micromegas
- 2×3 trigger scintillators

questions:
- efficiency
- spatial resolution
- homogeneity
- inclined track reconstruction

Jona Bortfeldt (LMU München) Development of Floating Strip Micromegas 02/12/14 17
50 × 48 cm² Micromegas in 120 GeV Pion Beam @ H6 SPS

Floating Strip Micromegas
- 1920 strips, 150 µm width, 250 µm pitch
- 8 mm drift gap
- x-y- and angular scans

Tracking System:
- Six non resistive Micromegas
- Two resistive Micromegas
- 2 × 3 trigger scintillators

Questions:
- Efficiency
- Spatial resolution
- Homogeneity
- Inclined track reconstruction

Jona Bortfeldt (LMU München) Development of Floating Strip Micromegas 02/12/14 17
Pulse Height

pulse height vs E_{amp}

- exponential rise as expected (Townsend theory)
- gas gain can be selected over wide range as needed
- $37.5 \text{kV/cm} \simeq 480 \text{ V}$

pulse height vs E_{drift}

- $E_{\text{drift}} < 0.4 \text{kV/cm}$:
 - low charge separation
 - low drift velocity
- $E_{\text{drift}} > 1.0 \text{kV/cm}$:
 - low electron mesh transparency
Efficiency & Drift Field

efficiency vs E_{drift}

inefficient spots ⇔ pillars

optimum value: $(95 \pm 2)\%$, limited by mesh supporting pillars
Determining the Spatial Resolution

\[\hat{\text{resid}} = x_{\text{track}} - x_{\text{meas}} \]

- doing this for many tracks
- residual distribution

\[\sigma_{\text{resid}} = \sqrt{\sigma_{\text{track}}^2 + \sigma_{\text{SR}}^2} \]
Spatial Resolution & Drift Field

- optimum value: $(49 \pm 2) \mu m$
- no strong dependence on absolute pulse height
- resolution \leftrightarrow number of electrons, entering the amplification gap + low diffusion

\rightarrow spatial resolution better $50 \mu m$
Track Inclination Reconstruction in a Single Detector Plane

- **Measurement:** 120 GeV Pion Tracking

- **Method:**
 - arrival time \leftrightarrow drift distance
 - measure arrival time of charge cluster on strip
 - signal timing t_0
 - linear fit to time-strip data points
 - track inclination
 - alternative hit position

- **Systematics:**
 - capacitive coupling of signals onto neighboring strips
 - simulation with parameter-free LTSpice detector model
track inclination reconstruction possible for angles $20^\circ \leq \vartheta \leq 40^\circ$

with angular resolution $(+6^\circ, -4^\circ)$

- systematic effect understood \rightarrow calibration possible

- combined position reco possible (μTPC + centroid)
Ion Tracking with Thin Micromegas at Highest Rates @ HIT

beams

- ^{12}C @ 88 MeV/u to 430 MeV/u
 2 MHz to 80 MHz
- ^{1}p @ 48 MeV to 221 MeV
 80 MHz to 2 GHz

thanks to S. Brons and the HIT accelerator team for the support

floating strip Micromegas

- $6.4 \times 6.4 \text{ cm}^2$ doublet
- low material budget
 ($\text{FR4 + Cu} \leq 200 \mu\text{m}$)

additional detectors

- $9 \times 9 \text{ cm}^2$ monitoring Micromegas with x-y-readout
- trigger on secondary charged particles
Beam Characterization

signal timing ^{12}C, 5×10^6 Hz

- good multihit resolution
- bunch spacing measureable
- bunch filling measureable
Signals at Lowest and Highest Rate

\(^{12}\)C, \(E = 430\) MeV/u, 5 MHz

\(\text{p, } E = 221\) MeV, 2 GHz

3 particles clearly distinguishable
\rightarrow single particle tracking possible

integration over \(\sim 800\) coincident particles
\rightarrow envelope of beam profile
Pulse Height & Spatial Resolution for 88 MeV/u Carbon Ions

- up to 80 MHz single particle tracks visible but not all of them separable
- only 20% pulse height reduction @ 80 MHz
- highest rates: slight distortion of hit position by hits on adjacent strips
- limited by multiple scattering
- sufficient for medical application

→ tracking of carbon ions at highest rates possible
Detection Efficiency and Up-Time

\[p, \ 221 \text{ MeV} \]

\[\text{mean particle rate [Hz]} \]

\[0 \]

\[500 \]

\[1000 \]

\[1500 \]

\[2000 \]

\[6 \]

\[10 \]

\[\times \]

\[\text{efficiency} \]

\[0.7 \]

\[0.75 \]

\[0.8 \]

\[0.85 \]

\[0.9 \]

\[0.95 \]

→ no efficiency & up-time reduction in floating strip Micromegas
Rate Capability & Multi-hit Resolution

reconstructed hits per multi-event

\[
\text{number of hits in detector} \times 10^6
\]

\[
\text{mean particle rate [Hz]}
\]

- reconstruction of all particles up to 10 MHz = 7 MHz/cm²

- Hough transform: \(d = x \cdot \cos(\alpha) + z \cdot \sin(\alpha) \)

- point in position space \(\iff \) line in Hough space

- line in position space \(\iff \) point in Hough space

- up to seven coincident tracks reconstructable
Summary

- floating strip Micromegas were optimized and work discharges:
 - behavior and topology understood
 - negligible influence on efficiency
- cosmic muon tracking in intense proton background possible (≈ 500 kHz/strip)
- high-energy pion tracking using a 48 × 50 cm2 floating strip Micromegas:
 - efficiency > 0.95
 - spatial resolution < 50 µm
 - homogeneous pulse height
- medium-energy carbon ion and proton tracking at highest rates
 - separation of all particles at rates ≤ 10 MHz
 - only 20% pulse height reduction at 80 MHz
 - spatial resolution better 180 µm at all rates ≤ 80 MHz
- stable operation up to highest rates of 2 GHz

floating strip Micromegas:
versatile, discharge tolerant, high-rate capable
tracking detectors with good spatial resolution

special thanks to

Otmar Biebel
Ralf Hertenberger
the hardware crew at LS Schaile
Dorothee Schaile
DFG
Raphaela Bortfeldt
Summary

- floating strip Micromegas were optimized and work
- discharges:
 - behavior and topology understood
 - negligible influence on efficiency
- cosmic muon tracking in intense proton background possible (≈ 500 kHz/strip)
- high-energy pion tracking using a 48×50 cm2 floating strip Micromegas
 - efficiency >0.95
 - spatial resolution <50 μm
 - homogeneous pulse height, efficiency & position resolution
- medium-energy carbon ion and proton tracking at highest rates
 - separation of all particles at rates ≤ 10 MHz
 - only 20% pulse height reduction at 80 MHz
 - spatial resolution better 180 μm at all rates ≤ 80 MHz
 - stable operation up to highest rates of 2 GHz

floating strip Micromegas:
versatile, discharge tolerant, high-rate capable
tracking detectors with good spatial resolution
Summary

- floating strip Micromegas were optimized and work
- discharges:
 - behavior and topology understood
 - negligible influence on efficiency
- cosmic muon tracking in intense proton background possible (≈ 500 kHz/strip)
- high-energy pion tracking using a 48 × 50 cm² floating strip Micromegas
 - efficiency > 0.95
 - spatial resolution < 50 µm
 - homogeneous pulse height, efficiency & position resolution
- medium-energy carbon ion and proton tracking at highest rates
 - separation of all particles at rates ≤10 MHz
 - only 20% pulse height reduction at 80 MHz
 - spatial resolution better 180 µm at all rates ≤80 MHz
 - stable operation up to highest rates of 2 GHz

floating strip Micromegas:
versatile, discharge tolerant, high-rate capable
tracking detectors with good spatial resolution

Thank you!
backup – Discrete & Integrated Floating Strip Micromegas

- Discrete:
 - SMD capacitor 15pF
 - mesh
 - copper strips
 - SMD resistor 22MΩ
 - cathode -300V
 - +500V

- Integrated:
 - mesh
 - copper strips
 - resistor 10MΩ
 - cathode -HV

- Anode strips: connected to HV via printable paste resistors
- Readout strips: second layer of copper strips
- Capacitive coupling through the board, intrinsically HV sustaining

- Exchangable Rs and Cs → optimization possible
- More complicated assembly → soldering ×2 for each strip
- Space requirements due to HV sustaining components → strip pitch limited to 0.5 mm
backup – Track Inclination Reconstruction Systematics: LTSpice-Simulation

- use LTSpice to simulate 16 neighboring strips, read out via charge-sens.-preamps
- consider mesh-anode strip, anode strip-ground, anode strip-anode strip, coupling, stripline-stripline and stripline-ground capacitance, no free parameter
- inject time dependent current on anode strips → study signals on all other strips
backup – Hough Transform Based Track Building

track with slope \(-b_1\) & intersect \(a_1\)

point in position space \((z_i, x_i)\)

line in position space \(x = -b_j z + a_j\)

line in Hough space \(a = z_i b + x_i\)

point in Hough space \((b_j, a_j)\)

- for improved stability: use Hesse normal form as transform function
- up to seven valid tracks reconstructed per event