Effective Actions for Cosmic String Simulation

Guy Moore, TU Darmstadt, with Vincent Klaer

- Motivation: Axion abundance
- Reminder: String structure, multiscale problem
- Effective description with separation scale r_0
- Implementation in 2+1 Dimensions
- Alternative implementation, works in 3+1 D
- Results so far

Axion

Complex scalar φ , QCD-anomalous global U(1) symmetry:

$$-\mathcal{L} = \partial_{\mu}\varphi \partial^{\mu}\varphi^* + \frac{m_r^2}{8f_a^2} \left(2\varphi^*\varphi - f_a^2\right)^2 - \mathcal{L}_{\varphi,QCD}$$

with $\mathcal{L}_{\varphi,QCD}$ an interaction Lagrangian with QCD degrees of freedom which makes the U(1) $SU_c(3)$ anomalous.

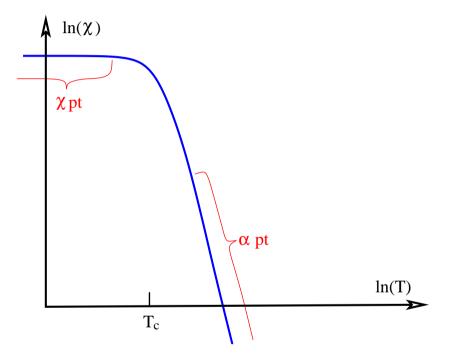
Symmetry spontaneously breaks, $\varphi = \frac{f_a}{\sqrt{2}} e^{i\theta_A}$.

One value, $\theta_A = 0$, is P, CP conserving

QCD gives small U(1)-violating "tilt" to potential:

$$V(\theta_A) = \chi(T)(1 - \cos \theta_A).$$

$\chi(T)$: what we expect



Low T: χ -pt works.

$$\chi \simeq \frac{m_u m_d}{(m_u + m_d)^2} m_\pi^2 f_\pi^2$$

Hi T: standard

pert-thy works(??)

Low T: $\chi(T\ll T_c)=(76\pm 1~{
m MeV})^4$ Cortona et al, arXiv:1511.02867 High T: $\chi(T\gg T_c)\propto T^{-8}$ Gross Pisarski Yaffe Rev.Mod.Phys.53,43(1981) but with much larger errors.

Initial state of φ field?

most likely: randomly different in different places!

• Inflation stretches quantum fluctuations to classical ones: $\Delta \varphi \sim H_{\rm infl.}$. If $N_{\rm efolds}H^2 > f_a^2$, scambles field.

If not: need $H < 10^{-5} \, f_a$ to avoid excess "isocurvature" fluctuations in axion field

• Gets scrambled *after* inflation if Universe was ever really hot $T>f_a\sim 10^{11}$ GeV.

Random starting conditions for field breaking a global U(1) symmetry: expect a network of cosmic strings!

Reminder: Cosmic String

Spont. breaking of U(1) allows for cosmic string solution:

$$\varphi(z,r,\phi) = \frac{f_a}{\sqrt{2}} f(r) e^{i(\phi-\phi_0)}, \qquad f(r) \begin{cases} \propto m_r r & m_r r \ll 1 \\ \to 1 & m_r r \gg 1 \end{cases}$$

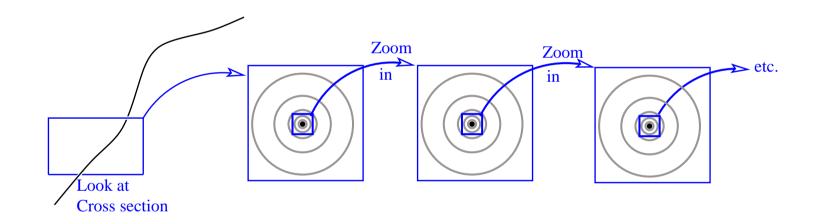
Solution is a *soliton* which is protected *topologically* from dissipating under local dynamics.

Get rid of string only by annihilating with anti-string.

Kibble mechanism: random initial conditions contain dense network of strings, which evolve towards scaling solution Inter-string spacing $R \sim H^{-1}$ the Hubble scale

m_r to H ratio does **not** scale out

$$E_{\text{str}} = \int dz \int d\phi \int r \, dr \, \left(\nabla \phi^* \nabla \phi \simeq f_a^2 / 2r^2 \right) \simeq \pi \ell f_a^2 \int_{m_r^{-1}}^{\sim H^{-1}} \frac{r \, dr}{r^2}$$



Series of "sheaths" around string:

equal energy in each $\times 2$ scale.

Assume $m_r \sim f_a$ and $H \sim T^2/m_{pl}$: $m_r/H \sim 10^{30}$.

Log-large string tension $T_{\rm str}=\pi f_a^2 \ln(10^{30})\equiv \pi f_a^2 \kappa$ with $\kappa\sim 70$

What controls string network dynamics?

- 1. String tension $\propto \pi f_a^2 \kappa$ makes string "crack," cut off loops, form cusps and kinks etc
- 2. String radiation to Goldstones $\propto \pi f_a^2$ Damps fine structure on string.
- 3. Inter-string forces $\propto \pi f_a^2$ Helps strings collide, loops form, loops dissipate

Note, 1. scales with κ , the others do not. Large κ reduces importance of string-Goldstone couplings.

A three-scale problem!

Radiation removes "short" scale structure – down to scale $L_{\rm ss} \sim H^{-1}/\kappa \sim H^{-1}/70$. 3 scales:

$$\ln(k) \xrightarrow{H_r} \frac{H/\kappa \ H}{L_{\text{core}}} \ln(\text{length})$$

$$L_{\text{ss}} H^{-1}$$

- UV: Higgs-mass or core size scale $(m_r \text{ or } L_{\text{core}})$
- IR: Inter-string spacing, axion mass $(H \text{ or } H^{-1})$
- In between H^{-1}/κ : scale of string structure ($L_{\rm ss}$)

Do I need correct κ and $L_{\rm ss}H$ hierarchy?

Yes.

- Gets the right density and structure of strings
- Tension (weight) of string decides how much potential must "tilt" before string network gets annihilated. Network collapses when $dm_a/dt \sim \pi f_a^2 \kappa$
- Production and longevity of loops

We need to generate and resolve this hierarchy.

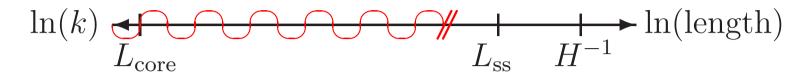
Can't I just use mesh refinement?

To reach spacing a along string, I need:

- Of order L/a boxes along each string
- ullet Time step of order a

Replaces $(L/a)^4$ effort with $(L/a)^2$ effort. Might get from (10^3) on a side to (10^6) on a side But that's far from (10^{30}) on a side. Not enough!

An effective description



Scales from m_r to just-under $L_{\rm ss}$ are boring: Just straight global string with log-scale tension. Integrate them out a la Abholkar and Quashnock:

- Strings, tension $\mathbf{T} = \kappa' \pi f_a^2$, $\kappa' = \ln(m_r/m_{\rm reg})$
- Goldstone θ_A fields throughout space
- Kalb-Ramond coupling between string, Goldstone:

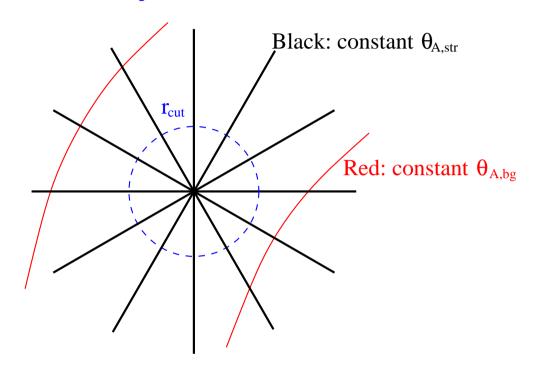
$$\mathcal{L} = \mathcal{L}_{NG} + f_a^2 \partial_\mu \theta_A \partial^\mu \theta_A / 2 + \mathcal{L}_{KR}$$

Effective Theory in More Detail

Put tube, size $r_{\rm cut}$ around string.

Field gradient

$$\nabla \theta_A = \\ \nabla \theta_{A,\text{str}} + \nabla \theta_{A,\text{bg}}$$



Outside: θ_A winds by 2π in going around circle.

Inside: string has tension $\pi f_a^2 \kappa_0$, with $\kappa_0 = \ln(m_r r_{\rm cut})$

Boundary: Find $\oint T_{ij}$ and apply as force-per-length

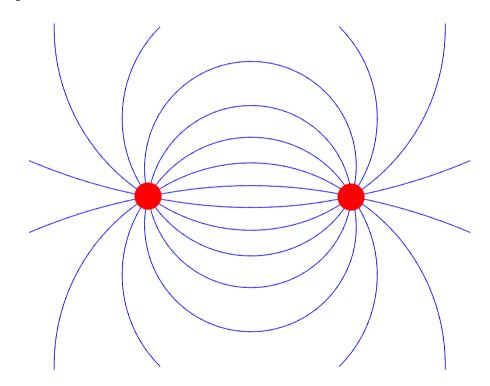
$$\frac{dF_i}{dz} = \oint T_{ij}d\hat{n}_j = 2\pi f_a^2 \epsilon_{ijk} \nabla_j \theta_{A,\text{bg}} \hat{s}_k$$

Garching, 09.03.2020 Slide 12 of 31

Clean example: 2+1 Dimensions

Suppose φ doesn't vary in z-direction: 2+1D.

String-antistring pair: lines of constant phase



Looks just like dipole. Because it is!

2+1 Dim: Dual EM description

Outside r_{cut} : θ_A is all the physics. Strict analogy to electromagnetism:

$$F^{\mu\nu} \equiv \epsilon^{\mu\nu\alpha}\partial_{\alpha}\theta_{A}$$

$$\partial_{\mu}F^{\mu\nu} = \epsilon^{\mu\nu\alpha}\partial_{\mu}\partial_{\alpha}\theta_{A} = 0$$

$$\epsilon^{\alpha\mu\nu}\partial_{\alpha}F_{\mu\nu} = -2\partial_{\alpha}\partial^{\alpha}\theta_{A} = 0$$

$$\oint \vec{E} \cdot d\hat{n} = \oint \frac{d\theta_{A}}{dl}dl = 2\pi N_{\text{wind}}$$

replace strings with point-charges of charge $\pm 2\pi$. Mass = tension $\pi f_a^2 \kappa_0$: choose any value you want!

Put it on the lattice?

Actually not super-easy.

Large-k modes on lattice propagate slower than light.

Allows Cherenkov radiation of high-k modes!

FIX by smearing charge in a ball (form factor at large k)

$$\ln(k) \xrightarrow{\bullet \bullet} \ln(\text{length})$$
 $a \quad r_{\text{cut}} \quad L_{\text{ss}} \quad H^{-1}$

Need $r_{\rm cut}/a$ and $L_{\rm ss}/r_{\rm cut}$ each a factor of "several" Two extrapolations: large $L_{\rm ss}/r_{\rm cut}$ and large $r_{\rm cut}/a$. But factor $L_{\rm ss}/a \sim 10^{28}$ now only $L_{\rm ss}/a \sim 5 \times 5$.

Simulations: what did we learn?

- Strings in 2+1D are really different than in 3+1D.
 - * Nonrelativistic
 - * Tight, slowly-decaying binary pairs
- ullet Walls "pull together" strings when $E_{
 m wall} \sim E_{
 m str}$

Wasting energy in walls

• Axion production very weakly κ dependent, close to misalignment value and can be lower

How do I generalize this method to 3+1 D?

We haven't found a way yet.

It looks possible but challenging

MPI-parallelizing would be harder still.

Other short-distance physics?

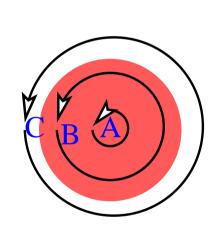
We need something which:

- Gives strings with large tension
- Strings obey expected Nambu-Goto behavior
- Strings force $\oint \partial_{\phi} \theta_A = 2\pi$
- No, or at least only heavy, DOF away from string

Abelian Higgs Model: Tension-Only Strings

$$\mathcal{L}(\varphi,A_{\mu}) = \frac{1}{4} (\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})^{2} + (D_{\mu}\varphi)^{*}(D^{\mu}\varphi) + \frac{\lambda}{8} \left(2\varphi^{*}\varphi - f_{a}^{2}\right)^{2}$$

with $D_{\mu} = \partial_{\mu} - ieA_{\mu}$ covariant derivative



$$\oint \partial_{\phi} \varphi \; d\phi = 2\pi f_a \quad {\sf but}$$

$$\oint D_{\phi}\varphi \ d\phi = (2\pi - B_{\text{encl}})f_a$$

A: full $\nabla \varphi$ energy.

B: partial. C: cancels.

Outside string, B compensates $\nabla \varphi$.

Finite tension $T \simeq \pi f_a^2$. No long-range interactions.

Trick: global strings, local cores

Hybrid theory with A_{μ} and two scalars

$$\mathcal{L}(\varphi_{1}, \varphi_{2}, A_{\mu}) = \frac{1}{4} (\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu})^{2}$$

$$+ \frac{\lambda}{8} \left[(2\varphi_{1}^{*} \varphi_{1} - f^{2})^{2} + (2\varphi_{2}^{*} \varphi_{2} - f^{2})^{2} \right]$$

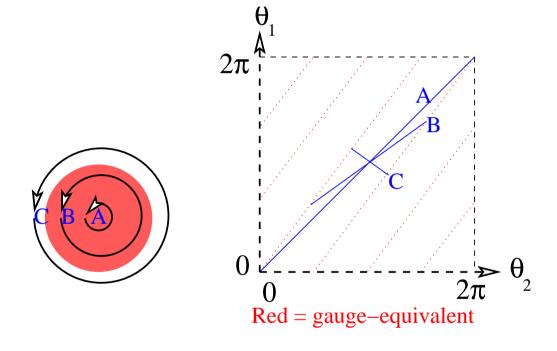
$$+ |(\partial_{\mu} - iq_{1}eA_{\mu})\varphi_{1}|^{2} + |(\partial_{\mu} - iq_{2}eA_{\mu})\varphi_{2}|^{2}$$

Pick $q_1 \neq q_2$, say, $q_1 = 4$, $q_2 = 3$.

Two rotation symmetries, $\varphi_1 \to e^{i\theta_1}\varphi_1$, $\varphi_2 \to e^{i\theta_2}\varphi_2$ $q_1\theta_1 + q_2\theta_2$ gauged, $q_2\theta_1 - q_1\theta_2$ global (Axion)

Two scalars, one gauge field

String where *each* scalar winds by 2π :



B-field almost compensates gradients outside string.

$$f_a^2 = f^2/(q_1^2 + q_2^2).$$

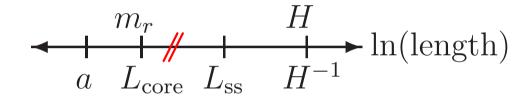
$$T \simeq 2\pi f^2$$
, $\frac{dF}{dl} = \frac{f^2}{(q_1^2 + q_2^2)r}$, $\kappa_{\text{eff}} = 2(q_1^2 + q_2^2)$.

Two scalars, one gauge field

- Strings have Abelian-Higgs core → Tension
- Outside core: $q_1\theta_2 q_2\theta_1 = Axions$
- Ratio of tension to f_a tunable: can get string tension right!

Heavy degrees of freedom, also off-string. But in *right limit*, their role should be small.

Scales in this model



Lattice spacing $a \ll m_r^{-1}$ micro-scale $\ll L_{\rm ss} \ll H^{-1}$ and H^{-1} must fit in the box.

But this *should* work for 2048^3 boxes...??

Must systematically explore $m_r a \to 0$ and $m_r L_{\rm ss} \to \infty$

Comments on $m_r a$

String must be several lattice spacings thick, eg, $m_r a \ll 1$

- Improved actions: $(m_r a)^4$ corrections (usually)
- BUT when strings become very relativistic Lorentz contraction: $(\gamma m_r a)$ is relevant
- $\gamma m_r a \sim 1$ mistreated (radiates heavy modes?)
- Prevalence of large γ should be $\propto \gamma^{-2}$

Corrections $\propto (m_r a)^2$ even with improved action. We extrapolated this limit in establishing axion production. But I am still nervous.

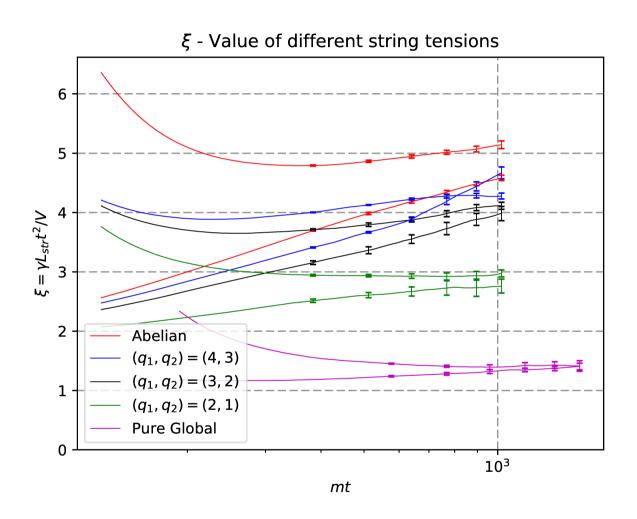
Comments on $L_{\rm ss}m_r$

Thickness should be small compared to structure, $L_{\rm ss}m_r\gg 1.$

- Technically never strictly true right after string intercommutations (kinks)
- when string has curvature radius $R\gg 1/m_r$ then its behavior should be well captured with **exponentally** small corrections
- Late stages of loop collapse also mistreated

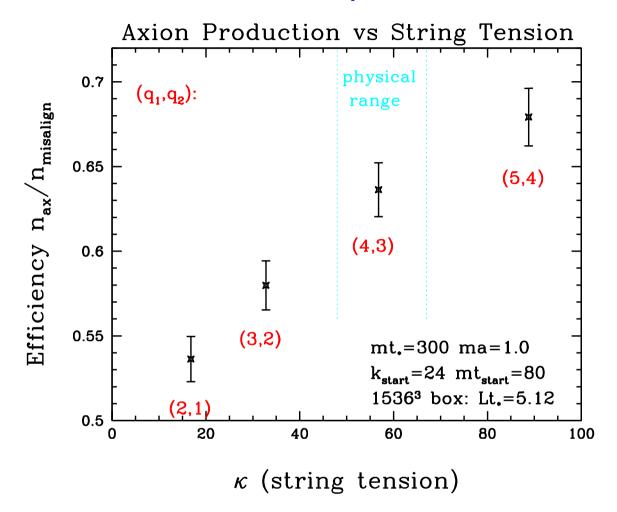
For counting axions, expect $\propto 1/(L_{\rm ss} m_r)$ corrections

String network Density



Physical tension: 2048^3 lattice may not be quite enough!

Results: Axion production



Axions produced vary mildly with increasing string tension But both am_r and $1/(m_r L_{\rm ss})$ are marginal!

Better numerics: Mesh tricks?

Effective theories + mesh refinement? Might work.

Alternative: Use 2-scalar Higgs along string core, θ_A -only at large distances (adaptive mesh DOF)

Both to be explored, in their infancy

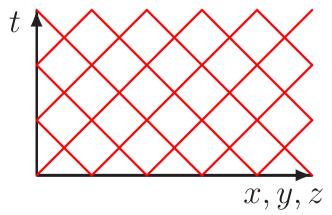
Better numerics? Algorithm

Many-core, GPU both limited by RAM bandwidth Bandwidth to L_2 cache is several times higher.

Simple fix: site ordering

```
for(kbig=0; kbig < N; kbig += 16)
for(jbig=0; jbig < N; jbig += 16)
for(i=0; i<N; i++)
for(ksmall=0;ksmall<16;ksmall++)
for(jsmall=0;jsmall<16;jsmall++) {
  k=ksmall+kbig; j=jsmall+jbig;
  (UPDATE) }</pre>
```

Complex fix: causal diamonds



One core does each diamond (fits in L_2)

Only boundary read/write to RAM

Back to axions for a moment

Axion production:
$$n_{\rm ax}(T=T_*)=(13\pm 2)H(T_*)f_a^2$$

Hubble law:
$$H^2 = \frac{8\pi\varepsilon}{3m_{\rm pl}^2}$$
,

Equation of state:
$$\varepsilon = \frac{\pi^2 T^4 g_*}{30}$$
, $s = \frac{4\varepsilon}{3T}$, $g_*(1 \text{GeV}) \simeq 73$

Susceptibility:
$$\chi(T) \simeq \left(\frac{1~{\rm GeV}}{T}\right)^{7.6} (1.02(35) \times 10^{-11} {\rm GeV}^4)$$

Dark matter:
$$\frac{\rho}{s} = 0.39 \text{ eV}$$

One finds
$$T_* = 1.54\,\mathrm{GeV}$$
 and $m_a = 26.2 \pm 3.4\,\mu\mathrm{eV}$

Conclusions

- Realistic global strings have small cores ⇒ high tension
- Brute-force will not work
- Right effective description known. Multiple realizations
- Most elegant θ_A plus explicit string DOF Works in 2+1D but not implemented in 3+1D
- Two scalar / frustrated network is alternative
- Getting all hierarchies is a challenge.