One-pion exchange process for Tcc+

[LHCb, arXiv:2109.01056]

Mikhail Mikhasenko

Excellence Cluster ORIGINS, Munich, Germany
Joint Physics Analysis Center

December 22nd, 2021
Hadronic three-body Christmas,
Garching, Germany
Thanks to all LHCb colleagues

Vanya Belyaev

Ivan Polyakov
Thanks to all LHCb colleagues

Vanya Belyaev

Ivan Polyakov

The oncoming paper is dedicated to the memory of Simon Eidelman
Selection of $D^0 D^0 \pi^+$

- Select $D^0 D^0 \pi^+$ candidates from primary vertex with detached $D^0 \to K^- \pi^+$
- Require detached $K^- \pi^+$ with high p_T
- Require good quality of tracks, vertexes, and particle ids.
- Ensure no K/π candidates belong to one track (clones)
- Ensure no reflections via mis-ID
- Subtract fake-D background using 2d fit to $(m_{K\pi} \times m_{K\pi})$
Spectrum fit and significance
Breit-Wigner model

Naive model
BW signal \[((DD)_S \pi P\text{-wave}] + \text{ph.sp. background}
- significance > 10\sigma
- peak below (4.3\sigma)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>117 ± 16</td>
</tr>
<tr>
<td>(\delta m_{BW})</td>
<td>−273 ± 61 keV/c^2</td>
</tr>
<tr>
<td>(\Gamma_{BW})</td>
<td>410 ± 165 keV</td>
</tr>
</tbody>
</table>

Fundamental properties? Need better model \((D^* D \text{ threshold})\)
Three-body resonances

- Many resonances dominantly decay to three-particle final state
 (e.g. $a_1(1260) \to 3\pi$, $X(3872) \to D^0\bar{D}^0\pi^0$, $T_{cc}^{+}(3872) \to D^0\bar{D}^0\pi^+$, $\Lambda_{c/b}^* \to \Lambda_{c/b}\pi\pi$)
- Reaction amplitude need to include three-body effects
 (e.g. three-body threshold, dynamics of OPE, triangle singularity)
- Three-body unitarity [Fleming(1964)/Holman(1965)/Amado(1973)]:
 \[
 \mathcal{T} - \mathcal{T}^\dagger = \mathcal{T}^\dagger \tau \mathcal{T} + \mathcal{T}^\dagger \tau^\dagger \mathcal{D} \tau \mathcal{T} + \mathcal{D} \tau \mathcal{T} + \mathcal{T}^\dagger \tau^\dagger \mathcal{D} + \mathcal{D}
 \]
 - the \mathcal{D} is an imaginary part of the OPE
 it is non-zero in the physical region: $(\sigma_1, \sigma_2) \in$ Dalitz
 - the τ indicates the phase space the particle-pair mass
 - the $\tau^\dagger \mathcal{D} \tau$ is an integral over the Dalitz

[Mai et al., EPJA 53, 177 (2017)]
[Jackura et al. (JPAC), EPJC 79, 56 (2019)]
[MM et al. (JPAC), JHEP 08 (2019) 080]
Ladders and resonances [MM et al. (JPAC), JHEP 08 (2019) 080]

\[\mathcal{T} = \mathcal{T}_{\text{short range}} + \mathcal{T}_{\text{includes OPE}} \]

- \(\mathcal{T}_{\text{includes OPE}} \) has a short log cut due to real-pion exchange
- Splitting is not unique: \(\mathcal{T}_{\text{includes OPE}} \) must include contact term

Is the \(\mathcal{T} \) what we are interested in?

- OPE process is an integral part of the three-to-three scattering, however,
- OPE is a “background” for the resonance pole

\[\mathcal{T} \xrightarrow{s \to s_{\text{pole}}} \frac{g^2}{s_{\text{pole}} - s} + \mathcal{B} + \ldots \]

- Any production amplitude \(2 \to 3 \) neither include \(\mathcal{B} \). It is convoluted with the source.
Amplitude for resonance process

Two-body resonance

\[\hat{T}_2(s) = \frac{g^2}{m^2 - s - ig^2 \Phi_2(s)} \rightarrow \frac{1}{(m^2 - s)/g^2 - \Sigma_2(s)} \]

- Self-energy: \(ig^2 \Phi_2(s) \rightarrow \Sigma_2(s) \), Chew-Mandelstam to ensure analyticity.
- \(\mathcal{K} \)-matrix: \(g^2/(m^2 - s) \) is uncontrolled real part

Three-body resonance

\[\hat{T}_R(s) = \frac{1}{(m^2 - s)/g^2 - \Sigma(s)} = \frac{1}{\mathcal{K}_1^{-1}(s) - \Sigma(s)} \]

- Dispersion relation for the self-energy:

\[\Sigma(s) = \frac{s}{2\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'(s' - s)} \int_{\text{Dalitz}(s')} |\hat{A}_{R \rightarrow 1,2,3}(s', \sigma_1', \sigma_2')|^2 d\Phi'_3 \]

- The \(|\hat{A}_{R \rightarrow 1,2,3}(s, \sigma_1, \sigma_2)|^2 \) is observable (+FSI) Dalitz-plot distribution
Iterative solution

Bethe-Salpeter / Blankenbeckler-Sugar / Lippmann-Schwinger / B-matrix (Mai/JPAC) approaches

\[\mathcal{T} = \mathcal{V} + \mathcal{V}_t \mathcal{T}, \quad \mathcal{V} = \mathcal{V}_0 + \mathcal{V}_1 \]

- Integral equation (system of eqs) that yields the unitary solution if \(\mathcal{V} \) includes OPE, \(\mathcal{V}_0 \).
- The real part of \(\mathcal{V} \) is unconstrained by unitarity (\(\mathcal{K} \)-matrix).

- Incorporates all three-body effects:
 - Three-body unitarity cut
 - Dynamics of the OPE
 - Triangle singularities

- Analyticity of \(\mathcal{T} \) is not ensured
 - Spurious left-hand singularities
 - First-sheet wooly cut (©Aitchison)
Relation to BS equations

1. Potential has two terms (V_0 includes OPE):
 \[V = V_1 + V_0. \]

2. Obtain T_0:
 \[T_0 = V_0 + V_0 \tau T_0, \]
 (the ladder: long-range)

3. Find a solution in the form ($T_0 +$ something)
 \[T = T_0 + (1 + T_0 \tau) \hat{T} (1 + \tau T_0), \]

4. by solving,
 \[\hat{T} = V_0 + V_0 (\tau + \tau T_0 \tau) \hat{T}, \]
 (resonance: short-range)

5*. Algebraic relation for decay amplitude
 \[i \left| \hat{A}_{R \rightarrow 1,2,3} \right|^2 = i \tau^\dagger \frac{1}{\rho_3} \tau + \tau T_0 \tau - \tau^\dagger T_0^\dagger \tau^\dagger \]
 \[= (1 + \tau^\dagger T_0^\dagger) \left[i \tau^\dagger \frac{1}{\rho_3} \tau + \tau^\dagger D \tau \right] (1 + T_0 \tau). \]
Physical meaning of the terms [MM et al. (JPAC), JHEP 08 (2019) 080]

\[|\hat{A}_{R\rightarrow1,2,3}|^2 = \frac{1}{\rho_3} \left(1 + \tau^\dagger \hat{T}_0 \right) \left(1 + \tau^\dagger \hat{D}\tau \right) (1 + \hat{T}_0 \tau). \]

Relation to KT
- Khuri-Trieman framework: two-body unitarity continued to the decay domain
- Gives the rescattering effect, systematically accounts for triangle diagrams

\[F_{\text{decay}} = (1 + \hat{T}_{\text{KT}} \tau) \hat{C} \]

- Originally, \(s \) is a fixed parameter, however,
- \(\hat{T}_{\text{KT}} \) is a valid construct for \(\hat{T}_0 \) [Aitchison(1986), Pasquier(1968)]

The \(|\hat{A}_{R\rightarrow1,2,3}(s, \sigma_1, \sigma_2)|^2 \) is observable (+FSI) Dalitz-plot distribution
T_{cc}^+ decay amplitude

Model assumptions:
- $J^P = 1^+$: S-wave decay to $D^* D$
- T_{cc}^+ is an isoscalar: $|T_{cc}^+\rangle_{I=0} = \{|D^*0 D^0\rangle - |D^{*+} D^0\rangle\} / \sqrt{2}$
- No isospin violation in couplings to $D^{*+} D^0$ and $D^{*0} D^+$

Effective range of T_{cc}^+

$D^0 D^0 \pi^+$ ↔ 5.8 MeV ↔ $D^{*+} D^0$ ↔ 1.4 MeV ↔ $D^{*0} D^+$
T_{cc}^+ self-energy and hadronic reaction amplitude

Three-body unitarity [MM et al. (JPAC), JHEP 08 (2019) 080]

Dynamic amplitude of $D^*D \rightarrow D^*D$ scattering:

$$T_{2\times2}(s) = \frac{K}{1 - \Sigma K} = \frac{K(m^2 - s)}{m^2 - s - ig^2(\rho_{\text{tot}}(s) + i\xi(s))}$$

where K is the isoscalar potential:

$$K = \frac{1}{m^2 - s} \begin{pmatrix} g \cdot g & -g \cdot g \\ -g \cdot g & g \cdot g \end{pmatrix},$$

and Σ is the loop function:

$$\Sigma(s) = [D^*D \rightarrow DD\pi(\gamma) \rightarrow D^*D]$$

$$= \left[\text{contributions} \right].$$

The construction is guided by Unitarity and Analyticity.

Model parameters: $|g|^2$ and m^2 – bare mass and coupling
Fit to the spectrum

Unitarized model

- The signal shape does not depend on $|g|$ for $|g| \to \infty$.
- The lower limit: $|g| > 7.7(6.2) \text{ GeV}$ at 90(95)% CL
- δm_U is the only parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>186 ± 24</td>
</tr>
<tr>
<td>δm_U</td>
<td>$-359 \pm 40 \text{ keV}/c^2$</td>
</tr>
<tr>
<td>$</td>
<td>g</td>
</tr>
</tbody>
</table>

No direct sensitivity to the width, the value is driven by the model.
Predicted mass spectrum resolution removed

Visible characteristics:

- Peak position: -359 ± 40 keV
 (The most precise ever wrt to the threshold)

- FWHM: 47.8 ± 1.9 keV,

- Lifetime: $\tau \approx 10^{-20}$ s.
 (Unprecedented for exotic hadrons)

A bound state below $D^{*+}D^0$ threshold with a narrow width due to D^*

Still, the NLL scan suggest the low limit to the width, $\Gamma > 10$ keV at 95 CL.
Analytic continuation is non-trivial due to three-body decays [MM et al. (JPAC), PRD 98 (2018) 096021]

The pole parameters:

\[\delta m_{\text{pole}} = -360 \pm 40 \text{ keV} , \]
\[\Gamma_{\text{pole}} = 48 \pm 2 \text{ keV} . \]
Details on analytic continuation \cite{MM et al. (JPAC), PRD 98 (2018) 096021}

\[\hat{F}^{-1} = \frac{m^2 - s}{g^2} - \Sigma(s) \]

- $\Sigma(s)$ is a dispersion integral of three-body integral

Function $\Sigma(s)$ on the unphysical sheet

\[
\Sigma_{II}(s_{\text{complex}}) = \underbrace{\Sigma_{I}(s_{\text{complex}})}_{\text{dispersion integral (easy)}} + \underbrace{2i\rho(s_{\text{complex}})}_{\text{Dalitz integral (tough)}}
\]
The D^* width gives the limit to T_{cc}^+ width, $< \Gamma_{T_{cc}^+}^{(\text{max})}$

Parameter $|g|$ sets the value in the range $[0, \Gamma_{T_{cc}^+}^{(\text{max})}]$

The fit prefers the limit value
Weinberg Compositeness and the Width [MM, preliminary]

\[1 - Z = \sqrt{\frac{1}{1 + 2r/\mathcal{R}a}} \approx 1 - \frac{r}{a}, \quad \Rightarrow \quad Z \propto \frac{1}{|g|^2} \text{ when } |g| \to \infty \]

And, finite $|g|$ gives deviation of the width from the asymptotic value

“Molecule” configuration:
- two mesons are well separated,
- bound by forces similarly to el.mag. van der Waals,
- entirely coupled to $D^* + D^0$,
- T_{cc}^+ lives until D^*0 decays,
- spatially-extended object.

“Atomic” (©ancient Greek) configuration:
- genuine QCD state,
- bound by direct color forces
- $\sim T_{cc}^+$ cannot live shorter than D^*0,
- $\tau_{T_{cc}^+}$ can be arbitrary large (uncoupled from continuum)
- typical hadronic size of 1 fm.
How the width is made [MM, preliminary]

Components of the model:
- Coupled D^*+D^0/D^*0D^+ channels
- One-particle exchange
- $D^* \to D\pi$ decay

Analytic expression for the width:

$$\frac{1}{\Gamma} = \frac{1}{2\pi} \mathcal{P} \int_\text{th}^{\infty} \frac{\rho'(e)/\rho(\delta m_0)}{e - \delta m_0} \, de$$

- 48 keV: default model
- -12 keV if not consider the D^*0D^+
- ~ 15 keV is controlled by the tail

Two-body approx. [Albaladejo, M. (2021)]

48 keV $\stackrel{\text{remove}}{\longrightarrow}$ OPE \rightarrow 30 keV $\stackrel{\text{remove}}{\longrightarrow}$ 75 keV

$\frac{\rho'(\delta m_0)/\rho(\delta m_0)}{e - \delta m_0}$

Meng-Lin Du et al. (2021) gets 56 keV:
- supposedly includes FSI, analitycity is questionable

$\frac{\delta m_{D^*0D^+}}{[\text{MeV}]}$

25% of integral

$\rho'(\delta m_0)/\rho(\delta m_0)$
Summary

Crutial role of OPE for understanding \(T_{cc}^+ \) nature
- The width is a physical observable sensitive tightly related to the Weinberg compositeness
- The width saturation limit is highly impacted by the OPE

An ambitious program to address further important effects:
- Final-state interaction (\(D^*D \) triangles)
- Validation of quantum numbers
- Isospin violation in couplings (potential)
- Production ratios
Backup
Effective range extraction

Effective range and Weinberg compositeness

[LHCb, arXiv:2109.01056]

\[\mathcal{A}_{NR}^{-1} = \frac{1}{a} + r \frac{k^2}{2} - i k + O(k^4), \]

\[\frac{2}{|g|^2} \mathcal{A}_U^{-1} = -\left[\xi(s) - \xi(m_U^2) \right] + 2 \frac{m_U^2 - s}{|g|^2} - i \phi_{tot}. \]

Matching:

- \(r = 16w/|g|^2 \),
 where \(w \) is a normalization factor between \(\rho \) and \(k \)
- \(w \) excludes the contribution of the second threshold
- does not have the \(1/\sqrt{\delta} \) term

- \(T_{cc}^+ \): \(a = (-7.16 \pm 0.51) + i(1.85 \pm 0.28) \) fm
- \(T_{cc}^+ \): \(r \) is negative in the model: \(0 < -r < 11.9(16.9) \) fm at 90(95) % CL
- \(T_{cc}^- \): \(1 - Z > 0.48(0.42) \). \(T_{cc}^+ \) is consistent with the molecule
Comparison to the deuteron

Deuteron [Garcon, Van Orden(2001)]
- Presumably molecule
- $1 - Z \approx 1$
- $R_{\text{charge}} = 2.1$ fm
- $R_{\text{matter}} = 1.9$ fm
- $a = -5.42$ fm
- $r = 1.75$ fm

Tetraquark T_{cc}^+ [LHCb, arXiv:2109.01056]
- [compact cc core]
- [{$\bar{u}\bar{d}$ cloud}]
- Expected to be atomic
- $1 - Z \geq 0.48$ at 90% CL
- $R_{\text{charge}} = ??$
- $R_{\text{matter}} = ??$
- $a = -7.16$ fm
- $r > -11.9$ fm at 90% CL