Machine Learning approaches in Lattice QCD - An interdisciplinary exchange

from Monday, February 27, 2023 (8:00 AM) to Friday, March 3, 2023 (8:00 PM)
Institute for Advanced Study of the Technische Universität München

        : Sessions
    /     : Talks
        : Breaks
Feb 27, 2023
Feb 28, 2023
Mar 1, 2023
Mar 2, 2023
Mar 3, 2023
AM
8:30 AM Registration   ()
9:10 AM Welcome and aims of the workshop - Nora Brambilla   ()
9:25 AM Machine learning is ubiquitous - Maria-Paola Lombardo   ()
9:55 AM
Generative flow methods - Sinead Ryan (until 10:45 AM) ()
9:55 AM Aspects of scaling and scalability for flow-based samplers - Daniel Hackett   ()
10:20 AM Learning trivializing flows - David Albandea   ()
10:45 AM --- Coffee break ---
11:15 AM
Generative flow methods - Sinead Ryan (until 12:40 PM) ()
11:15 AM Fourier-Flow model generating Feynman paths - Lingxiao Wang   ()
11:40 AM Stochastic normalizing flows for lattice field theory - Elia Cellini   ()
12:00 PM Panel discussion - Members: Simone Bacchio Maria Paola Lombardo Daniel Hackett Alberto Ramos Chair: Sinead Ryan   ()
9:50 AM Model-Independent Learning of Quantum Phases of Matter with Quantum Convolutional Neural Networks - Frank Pollmann   ()
10:20 AM Automatic differentiation for Lattice gauge theories - Alberto Ramos   ()
10:45 AM --- Coffee break ---
11:15 AM
Gauge field generation - Phiala Shanahan (until 1:00 PM) ()
11:15 AM Simulation of the 2D Schwinger Model via machine-learned flows in Global Correction steps - Jacob Finkenrath   ()
11:40 AM Variational Autoregressive Networks for Information Theory - Tomasz Stebel   ()
12:00 PM Machine-learning-assisted Monte Carlo fails at sampling computationally hard problems - Jeanne Trinquier   ()
12:20 PM Panel discussion: 1. Utility of ML for lattice 2. application-specific features of gauge field generation 3. Biggest challenges 4. Applications at an interesting scale - Jeanne Trinquier Jacob Finkenrath Members: Fernando Romero Lopez Chair: Phiala Shanahan   ()
8:45 AM Introducing Munich Data Science Institute - Sylvia Kortüm   ()
9:00 AM
EFT, Lattice and ML - Nora Brambilla (Physik Department, TU Munich) (until 10:40 AM) ()
9:00 AM Learning Trivializing Gradient Flows - Simone Bacchio   ()
9:40 AM An analysis of Bayesian estimates for missing higher orders in perturbative calculations - Aleksas Mazeliauskas   ()
10:10 AM Generative models and EFTs - Marina Marinkovic   ()
10:40 AM --- Coffee break ---
11:10 AM
EFT, Lattice and ML - Nora Brambilla (Physik Department, TU Munich) (until 1:00 PM) ()
11:10 AM Finite-volume pionless EFT for multi-nucleon systems with differential programming - Fernando Romero-Lopez   ()
11:40 AM Panel discussion: 1. What can EFTs do for ML4LATTICE? 2. What ML4LATTICE could do for EFTs? - William Detmold Aleksas Mazeliauskas Phiala Shanahan Chair: Nora Brambilla Members: Marina Marinkovic   ()
9:30 AM ML for particle physics - Lukas Heinrich   ()
10:00 AM Complex Langevin real-time simulations and ML - Alexander Rothkopf   ()
10:30 AM
ML for physical interpretation of lattice results - Alexander Rothkopf (until 10:50 AM) ()
10:30 AM Towards fully bayesian analyses in Lattice QCD - Julien Frison   ()
10:50 AM --- Coffee Break ---
11:15 AM
ML for physical interpretation of lattice results - Alexander Rothkopf (until 1:00 PM) ()
11:15 AM Physical Concepts from Neural Networks with Two Inputs - Sebastian Wetzel   ()
11:35 AM Ab-Initio Quantum Chemistry via Graph Neural Networks - Nicholas Gao   ()
12:00 PM Panel discussion on ML for physics interpretation - Miles Cranmer Members: Sebastian Wetzel Matteo Favoni Fernando Romero Lopez Chair: Alexander Rothkopf   ()
9:00 AM ML and quantum field theories - Gert Aarts   ()
9:30 AM
Inverse Problem (until 11:00 AM) ()
9:30 AM Machine learning hadron spectral functions in Lattice QCD - Gabor Papp   ()
10:00 AM R-ratio from Lattice QCD - Jian Liang   ()
10:30 AM Inverse problem solving in nuclear physics with deep learning - Kai Zhou   ()
11:00 AM --- Coffee break ---
11:30 AM
Inverse Problem - Andreas Kronfeld (until 12:30 PM) ()
11:30 AM On the extraction of hadronic spectral densities from Euclidean correlators - Alessandro De Santis   ()
12:00 PM Panel discussion - Chair: Andreas Kronfeld   ()
PM
1:00 PM --- Lunch ---
2:30 PM
ML for particle physics - Lukas Heinrich (until 4:00 PM) ()
2:30 PM Discovering mathematical structures with neural networks - Sven Krippendorf   ()
2:50 PM Machine Learning at IceCube - Rasmus Orsoe   ()
3:10 PM Improving Normalizing Flows to Sample from Boltzmann Distributions - Vincent Stimper   ()
3:30 PM Panel discussion: - Chair: Lukas Heinrich   ()
4:00 PM --- Coffee break ---
4:30 PM
ML for phase transitions and sign problem mitigation - Will Detmold (until 6:00 PM) ()
4:30 PM Signal-to-noise improvement with contour deformations - Gurtej Kanwar   ()
4:50 PM Complex normalizing flows and subtractions for sign problems - Yukari Yamauchi   ()
5:10 PM Applying Complex Valued Neural Networks to the Hubbard Model Sign Problem: A Survey and Case Study - Marcel Rodekamp   ()
5:30 PM Panel discussion: 1. maximum improvement in <sign> 2. ML towards such a maximal improvement 3. Contour deformation for specific observables 4. Translation between observables/theories - Andrei Alexandru (The George Washington University) Members: Gurtej Kanwar Yukari Yamauchi Chair: Will Detmold Thomas Luu   ()
1:00 PM --- Group Photo ---
1:15 PM --- Lunch ---
2:30 PM
ML for phase transitions and sign problem mitigation - Maria-Paola Lombardo (until 4:00 PM) ()
2:30 PM Machine learning for quantum field theories with a sign problem - Andrei Alexandru   ()
2:50 PM A machine learning approach to the classification of phase transitions in many flavor QCD - Marius Neumann   ()
3:10 PM Teaching how to teach: defining learning samples to detect phase transitions - Francesco Di Renzo   ()
3:30 PM Panel discussion: 1. Competitivity of ML for Phase identification 2. ML for Hypothesised Phases 3. Potential of ML for sign porblem - Chair: Maria Paola Lombardo   ()
4:00 PM --- Coffee break ---
4:30 PM
Spectral Reconstruction - Gert Aarts (until 6:00 PM) ()
4:30 PM Brief introduction on spectral functions and their computation - Gert Aarts   ()
4:40 PM Spectral reconstruction with Gaussian processes - Julian Urban   ()
5:10 PM Spectral reconstruction with neural networks - Lingxiao Wang Kai Zhou   ()
5:40 PM Learning regulators for spectral reconstruction - Alexander Rothkopf   ()
5:50 PM Panel discussion - Chair: Gert Aarts   ()
1:00 PM --- Lunch ---
2:30 PM
ML as component of exact algorithms - Phiala Shanahan (until 4:35 PM) ()
2:30 PM Building Transport Maps and Making Good Use of Them - Michael Albergo   ()
3:00 PM Automatic differentiation for Lattice QCD - A. Ramos   ()
3:25 PM Symbolic Distillation of Neural Networks - Miles Cranmer   ()
3:55 PM Panel discussion: 1. Meaning of "exact" algorithms 2. in-principle vs in-practice exactness 3. applications for exactness - Miles Cranmer Members: Michael Albergo Andrei Alexandru Chair: Phiala Shanahan   ()
4:35 PM --- Reception ---
6:00 PM How to accelerate gauge field field generation using flow-based and hybrid models - Phiala Shanahan   ()
1:00 PM --- Lunch ---
2:30 PM
Symmetry equivariant neural networks/informed neural networks - Phiala Shanahan (until 3:40 PM) ()
2:30 PM Generation of gauge field configurations with equivariant neural networks - Matteo Favoni   ()
2:50 PM TBA - Daniel Hackett   ()
3:05 PM Panel discussion: 1. Symmetry-equivariance vs computational brute force 2. Computational challenges of gauge equivariance - Members: Gurtej Kanwar Matteo Favoni Christoph Lehner Chair: Phiala Shanahan   ()
3:40 PM
Poster session (With food and drinks) (until 6:40 PM) ()
12:30 PM --- Lunch ---
2:00 PM
EFT, Lattice and ML (until 3:15 PM) ()
2:00 PM Machine learning for symbolic computation in high energy physics - Abdulhakim Alnuqayqdan   ()
2:25 PM Alleviating the Sign Problem via Contour Deformation and Machine Learning - Thomas Luu   ()
2:50 PM Gauge-equivariant neural networks as preconditioners in lattice QCD - Christoph Lehner   ()
3:15 PM --- Coffee break ---
3:40 PM
EFT, Lattice and ML (until 5:00 PM) ()
3:40 PM Deep Learning and the Standard Model: a philosophy of science perspective - Luigi Scorzato   ()
4:10 PM The route towards phase transition recognition in Lattice Gauge Theories - Andreas Athenodorou   ()
4:40 PM Search for Exotic Higgs Bosons using Quantum Machine Learning - Nakul Aggarwal   ()
5:00 PM Summary - Nora Brambilla   ()