
Errors handlingErrors handling
ExceptionsExceptions

Your Program ...Your Program ...

1) should produce the desired results for all legal inputs
2) should give reasonable error messages for illegal inputs
3) need not worry about misbehaving hardware
4) need not worry about misbehaving system software
5) is allowed to terminate after finding an error

3, 4, and 5 are true for beginner’s code,
but often, we have to worry about those in real software.

22

Sources of errorsSources of errors

 Poor specification
 “What’s this supposed to do?”

 Incomplete programs
 “just had no time to finalize it”

 Unexpected arguments
 “sqrt() isn’t supposed to be called with -1 as its argument”

 Unexpected input
 “the user was supposed to input an integer” (wrong approach!)

 Code that simply doesn’t do what it was supposed to do
 Most difficult case! => “find the bug and fix it!”

33

Kinds of ErrorsKinds of Errors

 Compile-time errors
 Syntax errors
 Type errors

 Link-time errors (e.g. missing libraries)

 Run-time errors
 Detected by computer (crash)

 Detected by library (exceptions)

 Detected by user code
 Logic errors (most difficult to find)

 Detected by programmer
(code runs, but produces not what we had expected)

44

Bad function argumentsBad function arguments

The compiler helps:
number and types of arguments must match.
Example (function to calculate area) :

int area(int length, int width) {
return length*width;

}

int x1 = area(7); // error: wrong number of arguments
int x2 = area("seven", 2); // error: 1st argument has a wrong type
int x3 = area(7, 10); // ok
int x5 = area(7.5, 10); // ok, but dangerous: 7.5 truncated to 7;

// most compilers will warn you
int x6 = area(10, -7); // this is a difficult case:

 // the types are correct,
// but the values have no sense

55

Bad function ArgumentsBad function Arguments

 So, how about int x = area(10, -7);
 Alternatives:

 Just don’t do that
 Rarely a satisfactory answer

 The caller should check
 Do not expect that user of your code will do that ! Humans are

lazy :-)
 The function should check (good approach)

 Return an “error value” (not general, problematic)
 Set an error status indicator (e.g. “int errnum” in global scope)

(not general, problematic – don’t do this)
 Throw an exception

 Note: unfortunately, sometimes we can’t change a function that
handles errors in a way we do not like (e.g. function from library)

66

Bad function argumentsBad function arguments

 Why to worry?
 You want your programs to be correct
 Typically the author of a function has no control over

how it is called
 Writing “do it this way” in the manual is not a solution –

usually people don’t read manuals :-)
 The beginning of a function is often a good place to check

(Before the computation gets complicated)
 When to worry?

 If it doesn’t make sense to test every function, test some most
complex

77

How to report an errorHow to report an error

 Return an “error value” (not general, problematic)
int area(int length, int width) // return a negative value if bad
{ // argument

if(length <=0 || width <= 0) return -1;
return length*width;

}
So, “let the caller beware”. For example:

int z = area(x,y);

if (z<0) error ("bad area computation");

// error() here is some function that reports an error

 Problems:

 What if caller forget to check that return value?
 For some functions there isn’t a “bad value” to return (e.g. max())

88

How to report an errorHow to report an error

 Set an error status indicator (not general, problematic)
int errno = 0; // is used to indicate errors (global variable)
int area(int length, int width)
{

if (length<=0 || width<=0) errno = 7; // || means or
return length*width;

}

So, “let the caller check”
int z = area(x,y);
if (errno==7) error ("bad area computation");
// …

 Problems

 What if caller forget to check errno?
 Global variable errno – not good.
 How do user deal with that error?

99

How to report an errorHow to report an error

 Report an error by throwing an exception (correct approach)

 // Bad_area is a type to be used as an exception
class Bad_area { }; // an empty class (a user defined type)

int area(int length, int width)
{

if (length<=0 || width<=0) throw Bad_area(); // note the ()
return length*width;

}
 catch and deal with the error (e.g., in main())

try {
int z = area(x,y); // if area() doesn’t throw an exception

// make the assignment and proceed
} catch (Bad_area) { // if area() throws Bad_area() report

cout << "oops! Bad area calculation – fix program"<<endl;
}

1010

ExceptionsExceptions

 Exception handling is general
 You can’t forget about an exception: the program will

terminate even if it’s not handled

using a try{} catch{} construction
 Almost every kind of error can be reported using

exceptions
 You still have to figure out what to do with an

exception thrown in your program.
 Error handling is never really simple

1111

““Out of range” exceptionOut of range” exception

Try this:
vector<int> v(10); // create a vector of 10 ints,

 // each initialized to the default value 0,
 // referred to as v[0] .. v[9]

for (int i = 0; i < v.size(); ++i) v[i] = i; // set values
for (int i = 0; i <= 10; ++i){ // bug. Access to 10-th element
 cout << "v[" << i << "] == " << v[i] << endl; // run-time crash (?)
 cout << "v[" << i << "] == " << v.at(i) << endl; // OK. Exception
}

Note: operator[] (subscript operator) of standard library vector do
not reports a bad index, but member function at() does it by
throwing a out_of_range exception

1212

ExceptionsExceptions

For now, just use exceptions to terminate
programs gracefully, like this:

int main(){
try {

// … all your code
} catch (out_of_range) { // out_of_range std exceptions

cerr << "oops – some vector index out of range"<<endl;
} catch (…) { // all other exceptions

cerr << "oops – some exception"<<endl;
}

}

Note: standard exceptions (e.g. out_of_range)
are defined in <stdexcept> header

1313

A function A function error()error()

Here is implementation of a simple error() function

It works by “tagging” throws by string of comment s:

void error(string s) // error message string

{

throw runtime_error(s);

 }

runtime_error(const string& s) is a standard

exception (defined in <stdexcept>)

1414

Using Using error()error()

 Example
cout << "please enter integer in range [1..10]"<<endl;

int x = -1; // initialize with unacceptable value
cin >> x; // read from the keyboard
if (!cin) // check that cin read an integer
 error ("didn’t get an integer");
if (x < 1 || x > 10) // check if value is out of range
 error ("x is out of range");

 // if we reach this point,
 // we can use x with confidence

1515

How to look for errorsHow to look for errors

When you have written (drafted) a program, most
probably it will have errors (commonly called
“bugs”):
Program does something, but not what you've
expected. What to do:
 Find out what it actually does.

 Correct bug(s)

 Try again

This process is usually called “debugging”

1616

DebuggingDebugging

 How not to do it

while (program doesn’t appear to work) { // pseudo code

Randomly look at the program for something that “looks odd”

Change it to “looks better”

}

 Key question
How would I know if the program actually worked
correctly?

1717

Program structureProgram structure

Make the program easy to read so that you
have a chance of spotting the bugs:
 Write comments.

 Explain design ideas. Write comments for yourself!
 Use meaningful names.
 Indent. Many text editors (as “emacs”) do it for you.

 Use a consistent code layout
 Break code into small functions

 Try to avoid functions longer than a page
 Avoid complicated code sequences

 Try to avoid nested loops, nested if-statements, etc.
(But, obviously, you sometimes need those)

 Use library facilities.

1818

First get the program to compileFirst get the program to compile

 is every string literal terminated?
 cout << "Hello, << name << endl; // oops!

 is every character literal terminated?
cout << "Hello, " << name << '\n; // oops!

 is every block is terminated?
if (a>0) { /* do something */ // oops!

else { /* do something else */ }

 every set of parentheses matched?

if (a>0 // oops!

 x = f(y);

1919

First get the program to compileFirst get the program to compile

 is every name declared?
Did you include needed headers?
(e.g., <iostream>, <vector>, <algorithm>...)

 is every name declared before it’s used?
Did you spell all names correctly?
int count; /* … */ ++Count; // oops!
char ch; /* … */ Cin>>c; // double oops!

 did you terminate each expression statement
with a semicolon?

x = sqrt(y)+2 // oops!

z = x+3;

2020

DebuggingDebugging

 Look for run-time bugs, i.e. bugs not found by compiler:
(That’s much harder to do than it sounds):

 for (int i=0; 0 < vec.size(); ++i) { // oops! Infinite loop
 for(int i = 0; i <= max; ++j) { // oops! (if j was declared before)

 Carefully follow the program through the specified
sequence of steps:

 pretend you’re the computer executing the program
 does the output match your expectations?
 if there isn’t enough output to help, add debug output

statements
cerr << "x == " << x << ", y == " << y << endl; // error stream

2121

DebuggingDebugging
 When you write the program, always insert some

checks (“sanity checks”) that variables have
“reasonable values”
 Function argument checks are prominent examples of this

if (number_of_elements < 0)
error("impossible: negative number of elements");

if (number_of_elements > largest_reasonable)
error("unexpectedly large number of elements");

if (x < y) error("impossible: x<y");

 Design those checks so that some can be left in the
code even after you believe everything is correct
 It’s almost always better for a program to stop than to give

wrong results

2222

Debugging. Using assert()Debugging. Using assert()

 It is also a good practice to use assert() utility
(defined in <cassert> header):
 Put wherever you can

assert(bool_expression_that_always_must_be_true);

If (because of a bug) some assert() get false as parameter, you
will see a message with line number and function name where it
has happened.

 If you had debugged your code, all assert() could be disabled by
compiler option -DNDEBUG

 Note:
 If you have bool function_do_something_important(...){...}

 Never do assert(function_do_something_important(...));

as it could be switch off with -DNDEBUG by mistake

2323

DebuggingDebugging

Pay special attention to “end cases”
(beginnings and ends):

 Did you initialize every variable to a reasonable value
 Did the function get the right arguments? Did the

function return meaningful value?
 Did you handle the first / last element correctly?
 Did you handle the empty case (e.g. no elements, no

input) correctly?
 Did you open your files correctly (check success of

“open” operation?
 … and so on

2424

DebuggingDebugging

 If you can’t see the bug, you’re looking in the
wrong place
 It’s easy to be convinced that you know what the

problem is and stubbornly keep looking in the wrong
place

 Don’t just guess, be guided by output
 Work forward through the code from a place you sure is right.
 Work backwards from some bad output

 Once you have found “the bug”, carefully check
if fixing solves the whole problem
 It’s common to introduce new bugs with a “quick fix”

 “I've found the last bug” - programmer’s joke :-)

2525

NoteNote

 Error handling is fundamentally more difficult and messy
than “ordinary code”
 There is basically just one way things can work right.
 There are many ways that things can go wrong.

 The more people use a program, the better the error
handling must be
 If you break your own code, that’s your own problem but
 if your code is used by your friends, uncaught errors can cause

you to lose friends :-)

2626

Pre-conditionsPre-conditions

What a function requires as its arguments?
 Such a requirement is called a pre-condition
 Sometimes, it’s a good idea to check it

int area(int length, int width) // calculate area of a rectangle

 // length and width must be positive

{

if (length<=0 || width <=0) throw Bad_area();

return length*width;

}

2727

Post-conditionsPost-conditions

What must be true when a function ends?
 Such a requirement is called a post-condition

int area(int length, int width) // calculate area of a rectangle

 // length and width must be positive

{

 int S = length*width;

 // the result must be a positive as it is an area

 if(S < 0) throw Bad_area();

 return S;

}

2828

TestingTesting

How do we test a program?
 “Pecking at the keyboard” is okay for very small programs and

for very initial tests, but is insufficient for real systems
 Think of testing and correctness from the very start of the

project
 When possible, test parts of a program in isolation: when you

write a complicated function / class, write a little program (so
called “test bed”) that uses it with all possible input conditions
to see how it behaves in isolation before putting it into the real
program

2929

3030

Next talk

 Small calculator program

	Chapter 5 Errors
	Slide 2
	Sources of errors
	Kinds of Errors
	Slide 5
	Slide 6
	Slide 7
	How to report an error
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	A function error()
	Using error()
	Slide 16
	Debugging
	Slide 18
	First get the program to compile
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Pre-conditions
	Post-conditions
	Slide 29
	Slide 30

