
Customizing I/OCustomizing I/O

OverviewOverview

 Input and output
 Numeric output

 Integer and Floating point
 Numerical bases
 Manipulators

 File modes
 Binary I/O
 Positioning

 String streams
 Line-oriented input

 Character input
 Character classification

22

Kinds of I/OKinds of I/O

 Individual values

 Streams

 Textual
 Type driven, formatted
 Line oriented
 Individual characters

 Numeric
 Integer
 Floating point
 User-defined types

33

ObservationObservation

 As programmers we prefer regularity and simplicity
 But, our job is to meet people’s expectations

 People are very fussy/particular/picky/demanding
about the way their output looks
 They often have good reasons for that
 Convention / tradition rules

 What does 123,456 mean?
 What does (123) mean?

 The world of output formats is more weird than
you could possibly imagine

44

Output formatsOutput formats

 Integer values
 1234 (decimal)
 2322 (octal)
 4d2 (hexadecimal)

 Floating point values
 1234.56 (general)
 1.2345678e+03 (scientific)
 1234.567890 (fixed)

 Precision (for floating-point values)
 1234.56 (precision 6)
 1234.6 (precision 5)

 Fields
 |12| (default for | followed by 12 followed by |)
 | 12| (12 in a field of 4 characters)

55

Numerical Base OutputNumerical Base Output

66

 You can change “base”
 Base 10 == decimal digits: 0 1 2 3 4 5 6 7 8 9
 Base 8 == octal digits: 0 1 2 3 4 5 6 7
 Base 16 == hexadecimal digits: 0 1 2 3 4 5 6 7 8 9 a b c d e f

// simple test
#include <iomanip>

cout << dec << 1234 << "\t (decimal)"<<endl
 << hex << 1234 << "\t (hexadecimal)"<<endl
 << oct << 1234 << "\t (octal)”<<endl;

// The '\t' character is “tab” (short for “tabulation character”)

// results:
1234 (decimal)
4d2 (hexadecimal)
2322 (octal)

““Sticky” Manipulators Sticky” Manipulators

// simple test
cout << 1234 << '\t'

 << hex << 1234 << '\t'
 << oct << 1234 << endl;

cout << 1234 << endl; // the oct base is still in effect

// results:
1234 4d2 2322
2322

77

Other ManipulatorsOther Manipulators

// simple test:
cout << 1234 << '\t'

 << hex << 1234 << '\t'
 << oct << 1234 << endl;

cout << showbase << dec; // show bases

cout << 1234 << '\t'
 << hex << 1234 << '\t'
 << oct << 1234 << endl;

// results:
1234 4d2 2322
1234 0x4d2 O2322

88

Floating-point ManipulatorsFloating-point Manipulators

 You can change floating-point output format
 general – iostream chooses best format using n digits (this is the default)
 scientific – one digit before the decimal point plus exponent; n digits

after “.” (dot)
 fixed – no exponent, n digits after the decimal point

// simple test
cout << 1234.56789 << "\t\t (general) \n" // \t\t to aline columns

 << fixed << 1234.56789 << "\t (fixed) \n"
 << scientific << 1234.56789 << "\t (scientific) \n";

// results:
1234.57 (general)
1234.567890 (fixed)
1.234568e+003 (scientific)

99

Precision ManipulatorPrecision Manipulator
 Precision (the default is 6)

 scientific – precision is the number of digits after the “.” (dot)
 fixed – precision is the number of digits after the “.” (dot)

// example

cout << 1234.56789 << '\t' << fixed << 1234.56789 << '\t'
 << scientific << 1234.56789 << '\n';

cout << setprecision(5)
 << 1234.56789 << '\t' << fixed << 1234.56789 << '\t'
 << scientific << 1234.56789 << '\n';

cout << setprecision(8)
 << 1234.56789 << '\t' << fixed << 1234.56789 << '\t'

 << scientific << 1234.56789 << '\n';

 // results (note the rounding)
1234.57 1234.567890 1.234568e+003
1234.6 1234.56789 1.23457e+003
1234.5679 1234.56789000 1.23456789e+003

1010

Output field widthOutput field width

A width is the number of characters to be used for the
next output operation
 Beware: width applies to next output only (it doesn’t “stick” like

precision, base, and floating-point format)
 Beware: output is never truncated to fit into field

(better a bad format than a wrong value)

// example
cout << 123456 <<'|'<< setw(4) << 123456 << '|'
 << setw(8) << 123456 << '|' << 123456 << "|\n";
cout << 1234.56 <<'|'<< setw(4) << 1234.56 << '|'
 << setw(8) << 1234.56 << '|' << 1234.56 << "|\n";
cout << "asdfgh" <<'|'<< setw(4) << "asdfgh" << '|'
 << setw(8) << "asdfgh" << '|' << "asdfgh" << "|\n";

 // results
 123456|123456| 123456|123456|
 1234.56|1234.56| 1234.56|1234.56|
 asdfgh|asdfgh| asdfgh|asdfgh|

1111

ObservationObservation

 This kind of details is what for you need
textbooks, manuals, references, web search
etc.
 You always forget some of details when you need

them :-)

1212

A fileA file

 At the fundamental level, a file is a sequence
of bytes numbered from 0 upwards

 Other notions can be supplied by programs
that interpret a “file format”
 For example, 6 bytes "123.45" might be

interpreted as the floating-point number 123.45

1313

0: 1: 2:

File open modesFile open modes

 By default, an ifstream opens its file for reading
 By default, an ofstream opens its file for writing.
 Modes (alternatives) (ios_base class enumerators):

 ios_base::app // append (i.e., add to the end of the file)
 ios_base::ate // “at end” (open and seek to end)
 ios_base::binary // binary mode. (Beware. OS specific)
 ios_base::in // for reading
 ios_base::out // for writing
 ios_base::trunc // truncate file to 0-length

 A file mode is optionally specified after the name of the file:
 ofstream of1(name1); // defaults to ios_base::out
 ifstream if1(name2); // defaults to ios_base::in
 ofstream ofs(name1, ios_base::app); // append

 // rather then overwrite
 fstream fs(name, ios_base::in | ios_base::out); // both

 // in and out

1414

Text vs binary filesText vs binary files

in binary files, we use
sizes to delimit values

in text files, we use
separation / termination
characters

1515

1 2 3 ? ? ? ? ?

1 2 3 4 5 ? ? ?

123

12345

123 as
characters:

12345 as
characters:

 12345 as
 binary:

123 as binary:

1 2 3 4 5 6 ?

1 2 3 4 5 6

123456 as
characters:

123 456 as
characters:

Text vs binary filesText vs binary files

 Use text when you can !
 You can read it (without a fancy program)
 You can debug your programs more easily
 Text is portable across different systems
 Most information can be represented reasonably as

text
 Use binary only when you must

 E.g. image files, sound files, big data sets

1616

Binary filesBinary files

int main()
// use binary input and output

{
cout << "Please enter input file name \n";
string name;
cin >> name;
ifstream ifs(name.c_str(), ios_base::binary); // note: binary
if (!ifs) cout<<"can't open input file "<< name<<endl;

cout << "Please enter output file name \n";
cin >> name;
ofstream ofs(name.c_str(), ios_base::binary); // note: binary
if (!ofs) cout<<"can't open output file "<<name<<endl;

// “binary” tells the stream do not to try any manipulations with bytes

1717

Binary files (cont’d)Binary files (cont’d)

vector<int> v;
int i;

 // read from binary file using bool ifstream::read(char*, int)
while (ifs.read((char*) &i, sizeof(int))) // read 4 bytes into i

v.push_back(i);

// … do something with v …

// write v to binary file using bool ofstream::write(char*,int)
for(int i=0; i < v.size(); ++i)
 ofs.write((char*) &v[i], sizeof(int)); // write 4 bytes from v[i]

// Generally, read / write has 2 arguments: address in memory (as
// char*) and number of bytes to read / write

1818

Positioning in a file streamPositioning in a file stream

fstream fs(name.c_str()); // open for input and output
// …
fs.seekg(5); // move reading (get) position to 5 (the 6th character)
char ch;
fs >> ch; // read character (1 byte) and increment reading position
cout << "character 6 is " << ch << '(' << int(ch) << ")"<<endl; // B (66)
fs.seekp(1); // move writing (put) position to 1 (the 2nd character)
fs << 'A'; // write and increment writing position

1919

…AA file:

2: 6:put
position:

get
position:

0: 1:

B

PositioningPositioning

Whenever you can
 Use simple streaming

 Streams / streaming is a very powerful metaphor
 Write most of your code in terms of “plain”

istream and ostream

 Positioning is far more error-prone. Use it only if you
really need (e.g. work with random access files on
disk / in memory)

 Handling of the end-of-file position is system dependent and
basically unchecked

2020

String streamsString streams

A stringstream reads/writes from/to a string
rather than a file or a keyboard/screen

// function to convert characters in string s to floating-point value
double str_to_double(string s)
{

istringstream is(s); // make a stream so that we can read from s
double d = 0.;
is >> d; // read from string into double
if (!is) cout<<"double format error"<<endl;
return d;

}

double d1 = str_to_double("12.4"); // OK
double d2 = str_to_double("1.34e-3"); // OK
double d3 = str_to_double("twelve point three"); // format error

2121

String streamsString streams

 Very useful for
 formatting into a fixed-sized space (e.g. for GUI)
 for extracting typed objects out of a string

2222

Read string vs Read lineRead string vs Read line

 Read a string
string name;
cin >> name; // keyboard input: Dennis Ritchie
cout << name << '\n'; // output: Dennis ('till first white-space)

 Read a line
string line; string first_name; string second_name;
getline(cin, line); // keyboard input: Dennis Ritchie
cout << line << endl; // output: Dennis Ritchie
// parse this line
istringstream ss(line);
ss >> first_name;
ss >> second_name;

 Better solution:

cin >> first_name >> second_name; // do the same
2323

CharactersCharacters

 You can also read individual characters

char ch;
while (cin >> ch) { // read into ch, skipping whitespace characters

if (isalpha(ch)) { // is it character?
 // do something

}
 }

while (cin.get(ch)) { // read into ch, don’t skip whitespace characters
 if (isspace(ch)) { // is it space?

 // do something

 } else if (isalpha(ch)) { // character?

 // do something else
}

}
2424

Character classification functionsCharacter classification functions

 If you use character input, you often need one
or more of these functions

 (from header <cctype>):

 isspace(c) // is c whitespace? (' ', '\t', '\n', etc.)
 isalpha(c) // is c a letter? ('a'..'z', 'A'..'Z') note: not '_'
 isdigit(c) // is c a decimal digit? ('0'.. '9')
 isupper(c) // is c an upper case letter?
 islower(c) // is c a lower case letter?
 isalnum(c) // is c a letter or a decimal digit?

2525

Line-oriented inputLine-oriented input

 Prefer >> to getline()
 i.e. avoid line-oriented input when you can

 People often use getline() because they see no
alternative
 But it often gets messy

 When trying to use getline(), you often end up with
 usage of >> to parse the line from a stringstream
 or usage of get() to read individual characters

2626

2727

Next talk

 Streams
 I/O errors
 User defined “<<” and “>>” operators

2828

Practical part for today

 Write one base class and few derived classes.
 Put declaration of classes in different header files.

 Create objects of derived classes via “new”.

 In the main() demonstrate RTTI: i.e. having pointer to base
class, recognize on which derived class this pointer points
to.

2929

Practical part for today

 Write a function which converts “double” variable into a
string, with characters representing this number.
i.e. double v = 1234.56 should be converted to “1234.56”

	Chapter 11 Customizing I/O
	Overview
	Kinds of I/O
	Observation
	Output formats
	Numerical Base Output
	“Sticky” Manipulators
	Other Manipulators
	Floating-point Manipulators
	Precision Manipulator
	Output field width
	Slide 12
	A file
	File open modes
	Text vs. binary files
	Text vs. binary
	Binary files
	Slide 18
	Positioning in a filestream
	Positioning
	String streams
	Slide 22
	Type vs. line
	Characters
	Character classification functions
	Slide 26
	Slide 27
	Slide 28
	Slide 29

