Customizing I/O

Overview

* Input and output

* Numeric output
Integer and Floating point
Numerical bases
Manipulators

File modes
Binary 1/O
Positioning

= String streams

" Line-oriented input

Character input
Character classification

N

Kinds of 1/O

* |Individual values

Streams

Textual
Type driven, formatted
Line oriented
Individual characters

Numeric
Integer
Floating point
User-defined types

= As programmers we prefer regularity and simplicity
But, our job is to meet people’s expectations

= People are very fussy/particular/picky/demanding
about the way their output looks

They often have good reasons for that
Convention / tradition rules

“What does 123,456 mean?

“What does (123) mean?

The world of output formats is more weird than
you could possibly imagine

Output formats

Integer values

1234 (decimal)

2322 (octal)

4d2 (hexadecimal)
= Floating point values

1234.56 (general)

1.2345678e+03 (scientific)
1234.567890 (fixed)

Precision (for floating-point values)

1234.56 (precision 6)
1234.6 (precision 5)
* Fields
[12] (default for | followed by 12 followed by |)

| 12| (12 in a field of 4 characters)

1

NumericallBase Output

You can change “base”

Base 10 == decimal digits: 0123456789
Base 8 == octal digits: 01234567
Base 16 == hexadecimal digits: 0123456789abcdef

Il simple test
#include <iomanip>
cout << dec << 1234 << "\t (decimal)"<<end|
<< hex << 1234 << "\t (hexadecimal)"<<endI
<< oct << 1234 << "\t (octal)”’<<endl;

Il The \t' character is “tab” (short for “tabulation character”)

Il results:
1234 (decimal)
4d2 (hexadecimal)
2322 (octal)

“Sticky™” Manipulators

Il simple test

cout << 1234 <<\t
<< hex << 1234 <<
<< oct << 1234 <<

cout << 1234 << endl;
Il results:

1234 4d2 2322
2322

I\tl
endl;

Il the oct base is still in effect

Other Manipulators

Il simple test:

cout << 1234 <<'\t'
<< hex << 1234 << '\t'
<< oct << 1234 << endl;

cout << showbase << dec; /I show bases

cout << 1234 <<\t
<< hex << 1234 << '\t’
<< oct << 1234 << endl;

Il results:
1234 4d2 2322
1234 0x4d2 02322

Floating-point Manipulators

= You can change floating-point output format

general — iostream chooses best format using n digits (this is the default)

scientific — one digit before the decimal point plus exponent; n digits
after “.” (dot)

fixed — no exponent, n digits after the decimal point

Il simple test

cout << 1234.56789 << "\t\t (general) \n" /[\t\t to aline columns
<< fixed << 1234.56789 << "\t (fixed) \n"
<< scientific << 1234.56789 << "\t (scientific) \n";

Il results:
1234.57 (general)
1234.567890 (fixed)

1.234568e+003 (scientific)

Precision Manipulator.

" Precision (the default is 6)

scientific — precision is the number of digits after the “.” (dot)
fixed — precision is the number of digits after the “.” (dot)
Il example

cout << 1234.56789 << '\t' << fixed << 1234.56789 << '\t'
<< scientific << 1234.56789 << '\n';

cout << setprecision(5)
<< 1234.56789 << '\t' << fixed << 1234.56789 << '\t'
<< scientific << 1234.56789 << '\n';

cout << setprecision(8)
<< 1234.56789 << '\t' << fixed << 1234.56789 << '\t'
<< scientific << 1234.56789 << "\n';

Il results (note the rounding)

1234.57 1234.567890 1.234568e+003
1234.6 1234.56789 1.23457e+003
1234.5679 1234.56789000 1.23456789e+003

Output field'width

A width is the number of characters to be used for the
next output operation

Beware: width applies to next output only (it doesn’t “stick” like
precision, base, and floating-point format)

Beware: output is never truncated to fit into field
(better a bad format than a wrong value)

Il example
cout << 123456 <<'|'<< setw(4) << 123456 <<'|"
<< setw(8) << 123456 <<'|' << 123456 << "|\n";
cout << 1234.56 <<'|'<< setw(4) << 1234.56 << |
<< setw(8) << 1234.56 <<'|' << 1234.56 << "|\n";
cout << "asdfgh" <<'|'<< setw(4) << "asdfgh" <<‘|"
<< setw(8) << "asdfgh" <<‘|' << "asdfgh" << "|\n";
Il results
123456|123456| 123456|123456]

1234.56]|1234.56| 1234.56|1234.56|
asdfgh|asdfgh| asdfgh|asdfgh|

= This kind of details is what for you need
textbooks, manuals, references, web search
etc.

You always forget some of details when you need
them :-)

= At the fundamental level, a file is a sequence
of bytes numbered from 0 upwards

= Other notions can be supplied by programs
that interpret a “file format”

For example, 6 bytes "123.45" might be
interpreted as the floating-point number 123.45

Eile open modes

By default, an ifstream opens its file for reading
By default, an ofstream opens its file for writing.

Modes (alternatives) (ios_base class enumerators):
ios_base::app // append (i.e., add to the end of the file)
ios_base::ate Il “at end” (open and seek to end)
ios_base::binary // binary mode. (Beware. OS specific)
ios_base::in Il for reading
ios_base::out Il for writing
ios_base::trunc /I truncate file to 0-length

A file mode is optionally specified after the name of the file:
ofstream of1(name1); // defaults to ios _base::out
ifstream iff(namez2); // defaults to ios _base::in
ofstream ofs(name1, ios_base::app); // append
Il rather then overwrite
fstream fs(name, ios_base::in | ios_base::out); // both
Il in and out

14

llext vs binary files

123 as
characters:

12345 as
characters:

123 as binary:

12345 as
binary:

123456 as
characters:

123 456 as
characters:

in binary files, we use
sizes to delimit values

in text files, we use
separation / termination

characters

llext vs binary files

= Use text when you can !
You can read it (without a fancy program)
You can debug your programs more easily
Text is portable across different systems

Most information can be represented reasonably as
text

= Use binary only when you must
E.g. image files, sound files, big data sets

Binary files

int main()
Il use binary input and output
{

cout << "Please enter input file name \n";

string name;

cin >> name;

ifstream ifs(name.c_str(), ios_base::binary); Il note: binary
if (lifs) cout<<"can't open input file "<< name<<end]l;

cout << "Please enter output file name \n";

cin >> name;

ofstream ofs(name.c_str(), ios_base::binary); Il note: binary
if ('ofs) cout<<"can't open output file "<<name<<endl;

Il “binary” tells the stream do not to try any manipulations with bytes

Binary files (cont™d)

vector<int> v;

inti;

Il read from binary file using bool ifstream::read(char*, int)

while (ifs.read((char®) &i, sizeof(int))) // read 4 bytes into i
v.push_back(i);

Il ... do something with v ...
Il write v to binary file using bool ofstream::write(char*,int)

for(int i=0; i < v.size(); ++i)
ofs.write((char®) &v[i], sizeof(int)); /I write 4 bytes from v[i]

Il Generally, read / write has 2 arguments: address in memory (as
Il char*) and number of bytes to read / write

Positioning In a file stream

put get
position: position:
A file:

fstream fs(name.c_str()); // open for input and output
...
fs.seekg(5); /I move reading (get) position to 5 (the 6" character)

char ch;

fs >> ch; Il read character (1 byte) and increment reading position
cout << "character 6 is " << ch <<'(' << int(ch) << ")"<<endl; /| B (66)
fs.seekp(1); /I move writing (put) position to 1 (the 2" character)

fs <<'AY; Il write and increment writing position

Positioning

Whenever you can

Use simple streaming
= Streams / streaming is a very powerful metaphor
= Write most of your code in terms of “plain”
istream and ostream

Positioning is far more error-prone. Use it only if you
really need (e.g. work with random access files on
disk / in memory)

= Handling of the end-of-file position is system dependent and
basically unchecked

String streams

A stringstream reads/writes from/to a string
rather than a file or a keyboard/screen

Il function to convert characters in string s to floating-point value
double str_to_double(string s)
{
istringstream is(s); // make a stream so that we can read from s
double d = 0.;

is >> d; Il read from string into double

if (lis) cout<<"double format error“<<endl;

return d;
}
double d1 = str_to_double("12.4"); Il OK
double d2 = str_to_double("1.34e-3"); Il OK

double d3 = str_to_double("twelve point three"); /| format error

String streams

= Very useful for
formatting into a fixed-sized space (e.g. for GUI)
for extracting typed objects out of a string

N
N

Read string vs Read line

= Read a string
string name;
cin >> name; Il keyboard input: Dennis Ritchie
cout << name <<'\n'; // output: Dennis ('till first white-space)

= Read aline
string line; string first_name; string second_name;
getline(cin, line); Il keyboard input: Dennis Ritchie
cout << line << endl; // output: Dennis Ritchie
Il parse this line
istringstream ss(line);
ss >> first_name;
ss >> second _name;

Better solution:
cin >> first_name >> second_name; // do the same

Characters

“ You can also read individual characters

char ch;
while (cin >> ch) { /] read into ch, skipping whitespace characters

if (isalpha(ch)) { // is it character?
Il do something

}
}

while (cin.get(ch)) { /I read into ch, don’t skip whitespace characters
if (isspace(ch)) { [/l is it space?

Il do something
} else if (isalpha(ch)) { /I character?

Il do something else

}
} 24

Character classification functions

= If you use character input, you often need one
or more of these functions

= (from header <cctype>):

isspace(c)
isalpha(c)
isdigit(c)
isupper(c)
islower(c)
isalnum(c)

Il is ¢ whitespace? ("', \t', \n’, etc.)

Il is c a letter? ('a'..'z', 'A’.."Z') note: not " '
Il is ¢ a decimal digit? ('0'.. '9’)

Il is ¢ an upper case letter?

Il is ¢ a lower case letter?

Il is ¢ a letter or a decimal digit?

N
1

Line-oriented input

= Prefer >> to getline()
l.e. avoid line-oriented input when you can

= People often use getline() because they see no
alternative

But it often gets messy

= When trying to use getline(), you often end up with
usage of >> to parse the line from a stringstream
or usage of get() to read individual characters

" Streams
= TI/0 errors
= User defined “<<” and ‘“>>" operators

N
-\|

Practical part for today

Write one base class and few derived classes.
= Put declaration of classes in different header files.

Create objects of derived classes via “new”.

In the main() demonstrate RTTI: 1.e. having pointer to base

class, recognize on which derived class this pointer points
to.

Practical part for today

* Write a function which converts “double” variable into a
string, with characters representing this number.

1.e. double v = 1234.56 should be converted to “1234.56”

	Chapter 11 Customizing I/O
	Overview
	Kinds of I/O
	Observation
	Output formats
	Numerical Base Output
	“Sticky” Manipulators
	Other Manipulators
	Floating-point Manipulators
	Precision Manipulator
	Output field width
	Slide 12
	A file
	File open modes
	Text vs. binary files
	Text vs. binary
	Binary files
	Slide 18
	Positioning in a filestream
	Positioning
	String streams
	Slide 22
	Type vs. line
	Characters
	Character classification functions
	Slide 26
	Slide 27
	Slide 28
	Slide 29

