Compact style
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nipigon
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Pangnirtung
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rainy_River
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Thunder_Bay
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
America/Yellowknife
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kiev
Europe/Kirov
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Uzhgorod
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zaporozhye
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
Europe/Berlin
English (United States)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
ORIGINS Seed Money Presentation Days 2023-02
Friday, May 19, 2023 -
10:00 AM
Monday, May 15, 2023
Tuesday, May 16, 2023
Wednesday, May 17, 2023
Thursday, May 18, 2023
Friday, May 19, 2023
10:00 AM
Acylphosphate bond to create temporary lipid-based vesicles
-
Oleksii Zozulia
(TU Munich)
Job Boekhoven
(TU Munich )
Acylphosphate bond to create temporary lipid-based vesicles
Oleksii Zozulia
(TU Munich)
Job Boekhoven
(TU Munich )
10:00 AM - 10:20 AM
The overarching goal of this project is to create transient lipid vesicles based on the acyl phosphate chemistry we recently discovered. Lipids spontaneously assemble into a membrane that forms a vesicle. Those vesicles serve as a compartment for even the simplest living systems. Those modern vesicles are relatively stable compartments. Their variations are also extensively used for the construction of protocell-like compartments in order to study the processes related to living systems. They can help to understand how Life originated and if it can be recreated from scratch. A problem with these studies is that these compartments are almost always close to equilibrium. Life cannot exist there. That is why we have studied compartmentalization regulated by non-equilibrium chemical reactions. Now, for the first time, we have the chemistry that could make lipid vesicle-based compartments also out of equilibrium. In this seed project, we would like to construct such out-of-equilibrium vesicles by making mixed acyl phosphate anhydrides of aliphatic carboxylic acids and alkyl phosphates at the expense of a fuel.
10:20 AM
LavaLamp: fast and highly modifiable Phase-Field simulation API tailored to soft matter physics
-
George Dadunashvili
(LMU)
Erwin Frey
(LMU)
Alexander Ziepke
(LMU)
LavaLamp: fast and highly modifiable Phase-Field simulation API tailored to soft matter physics
George Dadunashvili
(LMU)
Erwin Frey
(LMU)
Alexander Ziepke
(LMU)
10:20 AM - 10:40 AM
Our research group focuses on understanding the origins of life by studying the essential functions associated with it, particularly the emergence of spatially organized chemical patterns that lead to mechanical changes like cell motion and division. Due to the complexity of such systems, numerical simulations are necessary for a qualitative description. Phase-field methods are a widely used class of simulations that allow the modeling of systems across multiple length scales. Implementing such simulations can be daunting, as it often requires writing custom code or using software geared toward engineers and may not cater to the needs of physicists. With LavaLamp, we plan to develop an easy-to-use, high-performant open-source API. The software will enable researchers to implement phase-field simulations easily and to customize them to fit their needs. Therefore, LavaLamp will prove a powerful tool for studying complex biological systems and the origins of life.
10:40 AM
Micropattern multi-layer charge spreading pixel detector
-
Ralf Hertenberger
(LMU)
Otmar Biebel
(LMU)
F. Vogel
(LMU)
Christof Jagfeld
(LMU)
Micropattern multi-layer charge spreading pixel detector
Ralf Hertenberger
(LMU)
Otmar Biebel
(LMU)
F. Vogel
(LMU)
Christof Jagfeld
(LMU)
10:40 AM - 11:00 AM
Gaseous micropattern detectors offer excellent spatial and temporal resolution, also at large sizes. One reason for this is the reduction of their characteristic cell sizes into the sub-mm range. As a consequence, the amount of readout channels and thus cost and power consumption scales at two-dimensional. (2D) strip-readout by 2* W/P with pitch P and width W, for pixel detectors the number scales even by the square of W/P. As for 2D strip detectors the correct strip-by- strip combination of perpendicular strips responding in a particle event is complicated, pixel geometries are preferable for full position information, unfortunately with a quadratically increasing number of readout channels. The goal of this R&D study is to develop a micropattern gaseous pixel detector with relatively few readout pixels but still very high position information by use of charge spreading on stacked pixel layers. The first layer closest to the anode consists e.g. of 1x1mm2 large pixels. At each of the. consecutive layers, the pixels are a factor of 2 larger, 2x2, 4x4mm2, etc. To preserve unique position information the corner of a readout pixel on the “next” layer is situated above the middle of a pixel on the “previous” layer. A charge signal couples capacitively from a pixel on the layer closest to the anode to superjacent pixels on the other layers. On a three-layer pcb the signal is spread from 1 pixel on the first layer to one, two, or four pixels on the third layer with characteristic patterns of pulse height. Comparing the pulse-height distributions on the pixels of the last layer, read out by the electronics, should allow for unique and excellent position information. This scheme would allow reducing the number of readout channels by a factor of 4 when using a 2 layer printed circuit board, by 16 when using 3 layers and by 64 for 4 consecutive layers. The basic principle of capacitive coupling between stacked readout layers works in Micromegas detectors. This is one of the working principles of the many 10x10cm2 2D precision tracking muon reference detectors with two crossed strip-readout planes stacked in two layers underneath a resistive anode. Thus we expect the presented charge-sharing scheme to work.
11:00 AM
Mockup system for precise reconstruction of magnetic field noise sources for spin-clock experiments
-
Philipp Rößner
(TUM)
Peter Fierlinger
(TU München)
Florian Kuchler
(TUM )
Mockup system for precise reconstruction of magnetic field noise sources for spin-clock experiments
Philipp Rößner
(TUM)
Peter Fierlinger
(TU München)
Florian Kuchler
(TUM )
11:00 AM - 11:20 AM
Precise magnetic field reconstruction and identification of internal and external noise sources are essential for the next generation of fundamental symmetry tests, including electric dipole moment (EDM) and Ultra-light Dark Matter (DM) searches. The HeXe2 experiment, a new spin-clock measurement using polarized 3-He and 129-Xe, sensitive to both EDMs and DM, is currently being developed. It will be based in the new magnetically shielded facility at TUM, which is funded through a 2.6 MEUR DFG grant. To ensure that also the new generation of this experiment provides the best sensitivity in this field of research, we would like to demonstrate our new idea of 3D reconstruction of magnetic spin precession signals through an array of magnetic field sensors and advanced signal modeling methods. This will enable (i) conceptually novel insights into systematic issues of the next generation of such experiments and (ii) allow for a new method to suppress external noise sources through numerical separation of external and internal sources of signal. The high data quality from our new approach will enable the use of new methods like AI or advanced statistical modeling and thus a concept step in this field of research. We could identify a new data acquisition unit, which can simultaneously sample 42 channels at >16-bit depth, high speeds of >100 kHz, and a GB of onboard memory while being stabilized with an atomic clock. The system is based on an enhanced version of the hardware that our group is already experienced with. To perform the project, we thus want to purchase such a new system together with several fluxgate magnetic field sensors for R&D, which also serves for optimization of the measurement environment.
11:20 AM
REmotely and indiVidually Operated planet-Longitudinally-spread Imaging Atmospheric Cherenkov Telescopes (Revol-IACT)
-
David Paneque
(MPP)
REmotely and indiVidually Operated planet-Longitudinally-spread Imaging Atmospheric Cherenkov Telescopes (Revol-IACT)
David Paneque
(MPP)
11:20 AM - 11:40 AM
The research objective of this 1-year long project is to evaluate the ultimate performance of Deep Learning strategies applied to the Imaging Atmospheric Cherenkov Telescope (IACT) technique for very-high-energy gamma-ray astronomy. We aim to compare its performance to current standard analysis strategies, and investigate potential improvements which could be achieved through a new concept of IACT design optimized to maximally exploit the power of Deep Learning.